Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad

Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material... The effect of palm fiber on properties of automotive brake composite materials is analyzed. The test procedure followed is JASO C 406, which is for passenger car pads. Tribological properties of three brake pads (6 PF, 8 PF and 10 PF) were tested on full-scale inertia dynamometer for various performance parameters such as pressure–speed sensitivity (effectiveness studies) and Temperature sensitivity (fade and recovery behaviour). A pad undergoes all the testing parameters and maintains its low temperature rise in the disc for three pressure sensitivity and two temperature sensitivity tests. By increasing palm fiber content, hardness, heat swell and specific gravity increases, and also porosity and loss on ignition decreases. Test has been conducted using scanning electron microscope to analyse the all three specimens to evaluate the contact plateaus and wear debris during braking. 8% of palm fiber content in brake pad was found to be superior to 6 PF and 10 PF in most of the important tribological properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad

Loading next page...
 
/lp/springer_journal/pressure-and-temperature-sensitivity-analysis-of-palm-fiber-as-a-hpMG4c6bnH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1081-0
Publisher site
See Article on Publisher Site

Abstract

The effect of palm fiber on properties of automotive brake composite materials is analyzed. The test procedure followed is JASO C 406, which is for passenger car pads. Tribological properties of three brake pads (6 PF, 8 PF and 10 PF) were tested on full-scale inertia dynamometer for various performance parameters such as pressure–speed sensitivity (effectiveness studies) and Temperature sensitivity (fade and recovery behaviour). A pad undergoes all the testing parameters and maintains its low temperature rise in the disc for three pressure sensitivity and two temperature sensitivity tests. By increasing palm fiber content, hardness, heat swell and specific gravity increases, and also porosity and loss on ignition decreases. Test has been conducted using scanning electron microscope to analyse the all three specimens to evaluate the contact plateaus and wear debris during braking. 8% of palm fiber content in brake pad was found to be superior to 6 PF and 10 PF in most of the important tribological properties.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off