Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length

Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to... Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya–Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Engineering and Technology Springer Journals

Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length

Loading next page...
 
/lp/springer_journal/pressure-and-flow-rate-changes-during-contrast-injections-in-cerebral-bV72Cb66gM
Publisher
Springer Journals
Copyright
Copyright © 2018 by Biomedical Engineering Society
Subject
Engineering; Biomedical Engineering; Cardiology; Biomedicine, general
ISSN
1869-408X
eISSN
1869-4098
D.O.I.
10.1007/s13239-018-0344-3
Publisher site
See Article on Publisher Site

Abstract

Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya–Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.

Journal

Cardiovascular Engineering and TechnologySpringer Journals

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off