Preparation of ZnFe2O4 nanoparticles by mechanical alloying and annealing for sensitizing C-modified TiO2 and acquirement of efficient photocatalyst

Preparation of ZnFe2O4 nanoparticles by mechanical alloying and annealing for sensitizing... ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of ZnFe2O4 nanoparticles by mechanical alloying and annealing for sensitizing C-modified TiO2 and acquirement of efficient photocatalyst

Loading next page...
 
/lp/springer_journal/preparation-of-znfe2o4-nanoparticles-by-mechanical-alloying-and-PW3HE8iSZi
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2711-8
Publisher site
See Article on Publisher Site

Abstract

ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 7, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off