Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells

Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of... The double-layer photoanodes fabricated from TiO2 nanoparticles (np-TiO2) and TiO2 powder (P25) for dye-sensitized solar cells (DSSCs) are reported. The np-TiO2 was deposited on FTO substrates by a sparking technique. The PT1 and PT2 DSSCs were composed of FTO/P25/np-TiO2/N719/electrolyte/Pt and FTO/np-TiO2/P25/N719/electrolyte/Pt, respectively. The Nyquist plot and equivalent circuit of impedance of the DSSCs are also explained and discussed. In this research, the PT1 DSSC with a 1 h sparking period has the highest efficiency of 3.62, 50.21% higher than that of the reference. The enhancement is explained by the increase of adsorption of dye molecules that lead to a remarkable improvement in short-circuit photocurrent (J sc). The pore size distribution with increasing the film thickness played a role in the penetration of the electrolyte, dye molecules and effective surface area. Moreover, a decrease in the interfacial resistance was detected in the P25/np-TiO2 double-layered photoanode, leading to fast charge transport and decreased charge recombination in DSSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells

Loading next page...
1
 
/lp/springer_journal/preparation-of-tio2-nanoparticles-by-sparking-technique-for-enhancing-CRfQZenODT

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1007/s11164-017-2881-z
Publisher site
See Article on Publisher Site

Abstract

The double-layer photoanodes fabricated from TiO2 nanoparticles (np-TiO2) and TiO2 powder (P25) for dye-sensitized solar cells (DSSCs) are reported. The np-TiO2 was deposited on FTO substrates by a sparking technique. The PT1 and PT2 DSSCs were composed of FTO/P25/np-TiO2/N719/electrolyte/Pt and FTO/np-TiO2/P25/N719/electrolyte/Pt, respectively. The Nyquist plot and equivalent circuit of impedance of the DSSCs are also explained and discussed. In this research, the PT1 DSSC with a 1 h sparking period has the highest efficiency of 3.62, 50.21% higher than that of the reference. The enhancement is explained by the increase of adsorption of dye molecules that lead to a remarkable improvement in short-circuit photocurrent (J sc). The pore size distribution with increasing the film thickness played a role in the penetration of the electrolyte, dye molecules and effective surface area. Moreover, a decrease in the interfacial resistance was detected in the P25/np-TiO2 double-layered photoanode, leading to fast charge transport and decreased charge recombination in DSSCs.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 15, 2017

There are no references for this article.