Preparation of super-hydrophobic white carbon black from nano-rice husk ash

Preparation of super-hydrophobic white carbon black from nano-rice husk ash Nano-rice husk ashes were prepared by burning rice husk with a self-propagating method. The white carbon black with high purity was prepared by an alkali dissolving–acid reaction method from nano-husk ash. The super-hydrophobic SiO2 films were prepared by the sol–gel method using hexamethyldisilazane as a modifier. The effects of the pH and reaction time in the acid reaction process on the purity of the white carbon black, and the effect of the modifier on the hydrophobic property of SiO2 films were studied. The performances were characterized by XRD, BET, SEM, IR, and contact angle analyzer. The results showed that the purity of white carbon black reached 98.48 % when the NaOH solution with the rice husk ash was heated for 2 h at 90 °C, then the pH of the solution was adjusted by sulfuric acid to 3, and the acid reaction time was 2 h. The contact angle of SiO2 films was more than 160° when volume ratio of the modifier to silica–sodium hydroxide mixed solution was 0.15. The mechanism of the modifier on SiO2 surfaces is a graft copolymerization. The hydrophobic groups in the modifier replace the hydroxy groups on SiO2 surfaces and make SiO2 surfaces present super-hydrophobicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of super-hydrophobic white carbon black from nano-rice husk ash

Loading next page...
 
/lp/springer_journal/preparation-of-super-hydrophobic-white-carbon-black-from-nano-rice-R7iPP9CiUG
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1094-3
Publisher site
See Article on Publisher Site

Abstract

Nano-rice husk ashes were prepared by burning rice husk with a self-propagating method. The white carbon black with high purity was prepared by an alkali dissolving–acid reaction method from nano-husk ash. The super-hydrophobic SiO2 films were prepared by the sol–gel method using hexamethyldisilazane as a modifier. The effects of the pH and reaction time in the acid reaction process on the purity of the white carbon black, and the effect of the modifier on the hydrophobic property of SiO2 films were studied. The performances were characterized by XRD, BET, SEM, IR, and contact angle analyzer. The results showed that the purity of white carbon black reached 98.48 % when the NaOH solution with the rice husk ash was heated for 2 h at 90 °C, then the pH of the solution was adjusted by sulfuric acid to 3, and the acid reaction time was 2 h. The contact angle of SiO2 films was more than 160° when volume ratio of the modifier to silica–sodium hydroxide mixed solution was 0.15. The mechanism of the modifier on SiO2 surfaces is a graft copolymerization. The hydrophobic groups in the modifier replace the hydroxy groups on SiO2 surfaces and make SiO2 surfaces present super-hydrophobicity.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 16, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off