Preparation of pure and Sm-doped Na0.5Bi0.5TiO3 nanosized powders by sol–gel method and their electrical properties

Preparation of pure and Sm-doped Na0.5Bi0.5TiO3 nanosized powders by sol–gel method and their... The sol–gel method was applied to synthesize Na0.5Bi0.5TiO3 (NBT) sols and ceramic powders by using glycol as solvent and the optimized condition was determined. The optimized preparation parameters were selected as follows: reaction temperature = 20 °C, pH of sol system = 3.5, nNBT:nglycol (mol) = 1:12, drying temperature = 150 °C, annealing temperature = 350 °C and calcination temperature = 700 °C. In this condition, the prepared powders show pure perovskite phase and good crystalline structure with uniform size about 50 nm, and their resistivity was 3.71 × 106 Ω m at room temperature. Then, Sm-doped Na0.5Bi0.5TiO3 ceramic powders were also prepared by using the sol–gel method, and the changes in constitution, structure, and electrical properties before and after Sm-doping were characterized. The resistivity of modified NBT powders was distinctly decreased after Sm-doping. With an increase in Sm content, the resistivity first increases and then decreases, and its lowest value was 2.41 × 105 Ω m with 0.5 at% Sm content. The dielectric properties of modified NBT powders were also improved by Sm-doping, which reveals a higher dielectric constant, stable dielectric constant curve and dielectric loss curve with an increase in frequency. XRD and SEM analyses demonstrate that there are no new phases appearing in Sm-doped specimens, but the cell parameters have changed and grain size has increased, which would be devoted to the enhancement of the electrical properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of pure and Sm-doped Na0.5Bi0.5TiO3 nanosized powders by sol–gel method and their electrical properties

Loading next page...
 
/lp/springer_journal/preparation-of-pure-and-sm-doped-na0-5bi0-5tio3-nanosized-powders-by-ohIMa0bk1J
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2066-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial