Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of surfactants

Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of... Metal nanoparticles with a narrow size distribution could be prepared by sonolysis of aqueous solutions of metal cations in the presence of surfactants such as sodium dodecyl sulfate, polyethylene glycol monostearate, etc. The role of the surfactans is not only to stabilize formed particles, but also to produce reductive radicals in pyrolysis or hydrogen abstraction of OH radicals from surfactants. Particles with a smaller size could be obtained in a faster reduction rate with dilute metal cations concentration. Pt(IV) is consecutively reduced in two steps to Pt(0)via Pt(II). By comparing the sonolytical reduction withγ-ray radiolysis, two kinds of organic reducing radicals are proposed to contribute to the reduction. One (Rab) is an intermediate radical which is produced by hydrogen abstraction of OH radical from surfactant and effective only on the reduction of Pt(II) to Pt(0). The other (Rpy) is also an intermediate radical which is produced by thermal decomposition of surfactant at the interface between the cavity and bulk solution and effective on the reduction of Pt(IV) to Pt(II). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of surfactants

Loading next page...
 
/lp/springer_journal/preparation-of-nanoparticles-by-reducing-intermediate-radicals-formed-cPZUv6DG0C
Publisher
Brill Academic Publishers
Copyright
Copyright © 2004 by 2004 VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/1568567041856927
Publisher site
See Article on Publisher Site

Abstract

Metal nanoparticles with a narrow size distribution could be prepared by sonolysis of aqueous solutions of metal cations in the presence of surfactants such as sodium dodecyl sulfate, polyethylene glycol monostearate, etc. The role of the surfactans is not only to stabilize formed particles, but also to produce reductive radicals in pyrolysis or hydrogen abstraction of OH radicals from surfactants. Particles with a smaller size could be obtained in a faster reduction rate with dilute metal cations concentration. Pt(IV) is consecutively reduced in two steps to Pt(0)via Pt(II). By comparing the sonolytical reduction withγ-ray radiolysis, two kinds of organic reducing radicals are proposed to contribute to the reduction. One (Rab) is an intermediate radical which is produced by hydrogen abstraction of OH radical from surfactant and effective only on the reduction of Pt(II) to Pt(0). The other (Rpy) is also an intermediate radical which is produced by thermal decomposition of surfactant at the interface between the cavity and bulk solution and effective on the reduction of Pt(IV) to Pt(II).

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off