Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties

Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties Uniform nanoparticles and hollow microspheres of hematite (α-Fe2O3) were obtained via a hydrothermal method by using iron (III) chloride as a precursor. The effects of reactant concentration, reaction time and temperature on the morphology of the samples were studied. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and superconducting quantum interference device magnetometer (SQUID) measurement. α-Fe2O3 nanoparticles show a superparamagnetic behavior and the average size of the spherical particles was around 60 nm. However, hollow microspheres show a normal ferromagnetic behavior at room temperature with remanent magnetization and coercivity of 0.2482 emu/g and 2,516 Oe, respectively, and their average diameter was around 2 μm. The effects of reactant concentration and reaction temperature on the formation of the products were investigated. The experimental results reveal that the magnetic properties of hematite can be tuned by controlling the morphology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties

Loading next page...
 
/lp/springer_journal/preparation-of-nanoparticles-and-hollow-spheres-of-fe2o3-and-their-2MEJo7hHE2
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0269-z
Publisher site
See Article on Publisher Site

Abstract

Uniform nanoparticles and hollow microspheres of hematite (α-Fe2O3) were obtained via a hydrothermal method by using iron (III) chloride as a precursor. The effects of reactant concentration, reaction time and temperature on the morphology of the samples were studied. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and superconducting quantum interference device magnetometer (SQUID) measurement. α-Fe2O3 nanoparticles show a superparamagnetic behavior and the average size of the spherical particles was around 60 nm. However, hollow microspheres show a normal ferromagnetic behavior at room temperature with remanent magnetization and coercivity of 0.2482 emu/g and 2,516 Oe, respectively, and their average diameter was around 2 μm. The effects of reactant concentration and reaction temperature on the formation of the products were investigated. The experimental results reveal that the magnetic properties of hematite can be tuned by controlling the morphology.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off