Preparation of nano-silver-supported activated carbon using different ligands

Preparation of nano-silver-supported activated carbon using different ligands In this study, we investigated the effect of water soluble ligands [i.e., sodium borohydride (NaBH4), polyvinyl alcohol, glucose and galactose] on the preparation of nano-silver-supported activated carbon (AC). Ligand-stabilized Ag nanoparticle dispersion characteristics were also compared with those of ligand-free Ag nanoparticles. The nanoparticle distribution was investigated using a scanning electron microscope (SEM) which enabled a qualitative analysis of ligand-dependent nanoparticle adsorption onto AC. Silver nanoparticles with average sizes ranging from 7 to 20 nm were synthesized with different coatings. In particular, silver nanoparticles reduced and stabilized by NaBH4 were found to have a dense and homogenous dispersion of sizes in the range of 100–400 nm on the AC surface. These particles also seemed to remain on the AC surface after rinsing with water. The distribution of silver nanoparticles prepared in the presence of NaBH4/PVA was not as good as the one prepared with NaBH4. Their aggregate size varied from 300 to 600 nm on the AC surface and particles greater than 500 nm were eliminated from the AC surface upon rinsing with water. Glucose- and galactose-stabilized silver nanoparticles did not display an extensive adsorption and their adsorption seemed to be poor. However, glucose-stabilized silver nanoparticles could still be detectable to some extent after rinsing, while galactose-stabilized ones could not. Antimicrobial studies showed that all silver-containing carbons studied in this study inhibit bacterial growth and act as bacteriostatic agents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of nano-silver-supported activated carbon using different ligands

Loading next page...
 
/lp/springer_journal/preparation-of-nano-silver-supported-activated-carbon-using-different-cw8CqtuVyn
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2110-6
Publisher site
See Article on Publisher Site

Abstract

In this study, we investigated the effect of water soluble ligands [i.e., sodium borohydride (NaBH4), polyvinyl alcohol, glucose and galactose] on the preparation of nano-silver-supported activated carbon (AC). Ligand-stabilized Ag nanoparticle dispersion characteristics were also compared with those of ligand-free Ag nanoparticles. The nanoparticle distribution was investigated using a scanning electron microscope (SEM) which enabled a qualitative analysis of ligand-dependent nanoparticle adsorption onto AC. Silver nanoparticles with average sizes ranging from 7 to 20 nm were synthesized with different coatings. In particular, silver nanoparticles reduced and stabilized by NaBH4 were found to have a dense and homogenous dispersion of sizes in the range of 100–400 nm on the AC surface. These particles also seemed to remain on the AC surface after rinsing with water. The distribution of silver nanoparticles prepared in the presence of NaBH4/PVA was not as good as the one prepared with NaBH4. Their aggregate size varied from 300 to 600 nm on the AC surface and particles greater than 500 nm were eliminated from the AC surface upon rinsing with water. Glucose- and galactose-stabilized silver nanoparticles did not display an extensive adsorption and their adsorption seemed to be poor. However, glucose-stabilized silver nanoparticles could still be detectable to some extent after rinsing, while galactose-stabilized ones could not. Antimicrobial studies showed that all silver-containing carbons studied in this study inhibit bacterial growth and act as bacteriostatic agents.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 29, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off