Preparation of MoO3/Pt electrodes by electrodeposition for a direct methanol fuel cell

Preparation of MoO3/Pt electrodes by electrodeposition for a direct methanol fuel cell MoO3/Pt binary catalysts with various Mo/Pt ratios were prepared by an electrodeposition method for use as the anode in a direct methanol fuel cell. Pt was electrodeposited onto indium tin oxide (ITO) substrate, and then MoO3 was electrodeposited from an Mo-peroxo electrolyte on the top of Pt with different deposition times. The crystallinity of synthesized films was analyzed by X-ray diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM/EDS) was employed to investigate the surface morphology and composition. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry and chronoamperometry in a mixture of 0.5 M H2SO4 and 0.5 M CH3OH aqueous solution. Electrocatalytic activity for CO oxidation was also evaluated in a 0.5-M H2SO4 solution. The addition of a proper amount of MoO3 was found to significantly improve both the catalytic activity and stability for methanol oxidation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of MoO3/Pt electrodes by electrodeposition for a direct methanol fuel cell

Loading next page...
 
/lp/springer_journal/preparation-of-moo3-pt-electrodes-by-electrodeposition-for-a-direct-xfRc0m6sDJ
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0173-y
Publisher site
See Article on Publisher Site

Abstract

MoO3/Pt binary catalysts with various Mo/Pt ratios were prepared by an electrodeposition method for use as the anode in a direct methanol fuel cell. Pt was electrodeposited onto indium tin oxide (ITO) substrate, and then MoO3 was electrodeposited from an Mo-peroxo electrolyte on the top of Pt with different deposition times. The crystallinity of synthesized films was analyzed by X-ray diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM/EDS) was employed to investigate the surface morphology and composition. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry and chronoamperometry in a mixture of 0.5 M H2SO4 and 0.5 M CH3OH aqueous solution. Electrocatalytic activity for CO oxidation was also evaluated in a 0.5-M H2SO4 solution. The addition of a proper amount of MoO3 was found to significantly improve both the catalytic activity and stability for methanol oxidation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 10, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off