Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of slightly polluted source water

Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of... Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of slightly polluted source water

Loading next page...
 
/lp/springer_journal/preparation-of-modified-waterworks-sludge-particles-as-adsorbent-to-OzEKCjByA5
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9563-7
Publisher site
See Article on Publisher Site

Abstract

Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jul 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off