Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity

Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity

Loading next page...
 
/lp/springer_journal/preparation-of-chitosan-nanoparticles-by-spray-drying-and-their-V2xMMa7bjX
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1594-9
Publisher site
See Article on Publisher Site

Abstract

Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off