Preparation of apatite-type-silicate-supported precious metal catalysts for selective catalytic reduction of NOx

Preparation of apatite-type-silicate-supported precious metal catalysts for selective catalytic... Apatite-type silicate supported precious metal catalysts were prepared and investigated for their catalytic activity in selective catalytic NO reduction. Single-phase La9.33Si6O26 and La8.33ASi6O25.5 (A=Ca, Sr, Ba) were obtained by a sol-gel method. Pd/La9.33Si6O26 catalyst exhibited high activity for oxidation of C3H6, comparable to Pd/Al2O3 catalyst, although the specific surface area of La9.33Si6O26 was lower than that of Al2O3. In addition, Pt/La9.33Si6O26 catalyst exhibited higher activity for selective catalytic reduction of NO than Pt/Al2O3 catalyst. Substitution of Ba2+ for La3+ of La9.33Si6O26 led to increased catalytic activity at low temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of apatite-type-silicate-supported precious metal catalysts for selective catalytic reduction of NOx

Loading next page...
 
/lp/springer_journal/preparation-of-apatite-type-silicate-supported-precious-metal-hibbZ80Jk5
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/BF03036928
Publisher site
See Article on Publisher Site

Abstract

Apatite-type silicate supported precious metal catalysts were prepared and investigated for their catalytic activity in selective catalytic NO reduction. Single-phase La9.33Si6O26 and La8.33ASi6O25.5 (A=Ca, Sr, Ba) were obtained by a sol-gel method. Pd/La9.33Si6O26 catalyst exhibited high activity for oxidation of C3H6, comparable to Pd/Al2O3 catalyst, although the specific surface area of La9.33Si6O26 was lower than that of Al2O3. In addition, Pt/La9.33Si6O26 catalyst exhibited higher activity for selective catalytic reduction of NO than Pt/Al2O3 catalyst. Substitution of Ba2+ for La3+ of La9.33Si6O26 led to increased catalytic activity at low temperature.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off