Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene glycol-assisted sol–gel method, and its photocatalytic properties

Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene... A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene glycol-assisted sol–gel method, and its photocatalytic properties

Loading next page...
 
/lp/springer_journal/preparation-of-a-visible-light-driven-bi2o3-tio2-composite-M3xeYWWp4C
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0989-8
Publisher site
See Article on Publisher Site

Abstract

A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 9, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off