Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans

Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate... A novel Brønsted solid acid named poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) has been prepared by using H3PO4 and poly(vinylpyrrolidone) as green and commercially available reagents. The prepared reagent was characterized using a series of techniques including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), pH analysis, and Hammett acidity function. The mentioned solid acid with wide acidic functional group sites can be utilized as a highly efficient, heterogeneous, and reusable catalyst for preparation of 2-amino-3-cyano-5-oxo-5,6,7,8-tetrahydro-4H-benzopyrans using aldehydes, dimedone, and malononitrile. Also, this catalyst can be reused for several times without loss of catalytic activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans

Loading next page...
 
/lp/springer_journal/preparation-characterization-and-use-of-poly-vinylpyrrolidonium-kVpXWlVF58
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2312-y
Publisher site
See Article on Publisher Site

Abstract

A novel Brønsted solid acid named poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) has been prepared by using H3PO4 and poly(vinylpyrrolidone) as green and commercially available reagents. The prepared reagent was characterized using a series of techniques including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), pH analysis, and Hammett acidity function. The mentioned solid acid with wide acidic functional group sites can be utilized as a highly efficient, heterogeneous, and reusable catalyst for preparation of 2-amino-3-cyano-5-oxo-5,6,7,8-tetrahydro-4H-benzopyrans using aldehydes, dimedone, and malononitrile. Also, this catalyst can be reused for several times without loss of catalytic activity.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 19, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off