Preparation and photocatalytic performance of the Mn/BiOCl albizia flower

Preparation and photocatalytic performance of the Mn/BiOCl albizia flower Different molar ratio manganese-doped BiOCl composites (Mn/BiClO) were prepared by the hydrothermal method with imidazole hydrochloride [HMIM]Cl as the chlorine source and template. The Mn/BiClO composites were analyzed by X-ray diffraction (XRD) for crystalline structure, scanning electron micrography (SEM) for morphology, energy dispersive spectroscopy for element analysis, BET for the specific surface area and pore volume of the sample, diffuse reflectance spectra for optical properties, and X-ray photoemission spectroscopy (XPS) for the composition and the valence of the ions on the surface layer of the sample. The XRD analysis indicates that there is an increase in the peak intensity of Mn/BiOCl. The ultraviolet–visible measure result shows that the optical absorption edge appears to red-shift, which demonstrates the band gap of BiClO reduction by doping with Mn. The BiClO microflower completely spread in a hexapetalous manner in the ionic liquid (IL), increasing the chance of contact between catalyst and dye. The 23.5 % Mn/BiClO completely spread resembling an albizia flower. SEM and BET show that the Mn/BiClO albizia flower possessed greater surface area than the hexapetalous BiClO. XPS proves that Mn, Cl, O, and Bi are all present in Mn/BiOCl. These results show that doping with Mn not only improves ultraviolet photocatalytic activity, but also enhances visible photocatalystic performance of BiClO in the degradation of rhodamine. The results can be attributed to the prolongation of the lifetime of photogenerating electron–hole pairs, increase of surface area, and enlargement of optical absorption range by doping with Mn. Mn/BiClO completely degrades rhodamine B in just 40 min under ultraviolet light; moreover, Mn/BiClO can degrade 72 % of rhodamine B within 120 min under visible light. The photocatalyst experiment can be implemented in conditions of ice and water without adding any other chemical agent such as H2O2. This highly effective catalyst that can make full use of the sunlight has been seldom reported and demonstrated in the current literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation and photocatalytic performance of the Mn/BiOCl albizia flower

Loading next page...
 
/lp/springer_journal/preparation-and-photocatalytic-performance-of-the-mn-biocl-albizia-g0lqsJPmJQ
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2514-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial