Preparation and Photocatalytic Activity of Ag2S/ZnS Core–Shell Composites

Preparation and Photocatalytic Activity of Ag2S/ZnS Core–Shell Composites Ag2S/ZnS core–shell composite microspheres were successfully synthesized via a simple two-step hydrothermal process, in which Ag+ ions might replace Zn2+ ions on the surface of ZnS microspheres via an ion exchange, and subsequently form Ag2S nucleus on the surface of the microspheres. The effect of Ag2S content on the structure, morphology and optical properties of the material was studied in detail. We found that the photocatalytic efficiency of Ag2S/ZnS composites for the degradation of Rhodamine B (RhB) aqueous solution is much higher than that of pure ZnS or Ag2S under solar-simulated light irradiation, which is considered that the combination of a narrow band gap with a wide band gap semiconductor can timely transfer photogenerated electron–hole pairs and rapidly separate photogenerated electrons and holes. Moreover, the catalytic activities of the 4%Ag2S/ZnS sample for oxidation and decomposition of RhB with the assistance of hydrogen peroxide are enhanced with an increase of the degradation efficiency from 68.8 to 90.0% at room temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Surveys from Asia Springer Journals

Preparation and Photocatalytic Activity of Ag2S/ZnS Core–Shell Composites

Loading next page...
 
/lp/springer_journal/preparation-and-photocatalytic-activity-of-ag2s-zns-core-shell-6Ea1h690XU
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Chemistry; Catalysis; Physical Chemistry; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials
ISSN
1571-1013
eISSN
1574-9266
D.O.I.
10.1007/s10563-018-9249-2
Publisher site
See Article on Publisher Site

Abstract

Ag2S/ZnS core–shell composite microspheres were successfully synthesized via a simple two-step hydrothermal process, in which Ag+ ions might replace Zn2+ ions on the surface of ZnS microspheres via an ion exchange, and subsequently form Ag2S nucleus on the surface of the microspheres. The effect of Ag2S content on the structure, morphology and optical properties of the material was studied in detail. We found that the photocatalytic efficiency of Ag2S/ZnS composites for the degradation of Rhodamine B (RhB) aqueous solution is much higher than that of pure ZnS or Ag2S under solar-simulated light irradiation, which is considered that the combination of a narrow band gap with a wide band gap semiconductor can timely transfer photogenerated electron–hole pairs and rapidly separate photogenerated electrons and holes. Moreover, the catalytic activities of the 4%Ag2S/ZnS sample for oxidation and decomposition of RhB with the assistance of hydrogen peroxide are enhanced with an increase of the degradation efficiency from 68.8 to 90.0% at room temperature.

Journal

Catalysis Surveys from AsiaSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off