Preparation and performance valuation of high selective molecularly imprinted polymers for malachite green

Preparation and performance valuation of high selective molecularly imprinted polymers for... Molecular imprinting is a technology that facilitates the production of artificial receptors toward compounds of interest. In this study, we prepared a series of molecularly imprinted polymers (MIPs) by precipitation polymerization for the purpose of binding specifically to malachite green (MG). The presence of monomer–template solution complexes in non-covalent MIPs systems had been verified by UV-spectrometric detection and molecular dynamics simulations. The synthesized parameters were, respectively, optimized and the optimal conditions for the efficient adsorption property were as follows: template: MG, 1 mmol; functional monomer: methacrylic acid (MAA), 8 mmol; cross-linker: ethylene glycol dimethacryllate, 16 mmol; and porogen: acetonitrile, 30 mL. Fourier transform infrared spectroscopy and nitrogen adsorption experiments were used to characterize the MIPs. Scatchard analysis was used for estimation of the dissociation constants and maximum amounts of binding sites. The polymer based on MAA had two classes of heterogeneous binding sites characterized by two values of K D and B max: K D = 14.10 μmol L−1 and B max = 1.37 μmol g−1 for the higher affinity binding sites, and K D = 384.62 μmol L−1 and B max = 24.77 μmol g−1 for the lower affinity binding sites. The specificity of MIPs on SPE column was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward MG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation and performance valuation of high selective molecularly imprinted polymers for malachite green

Loading next page...
 
/lp/springer_journal/preparation-and-performance-valuation-of-high-selective-molecularly-kdm8eKF0FV
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0759-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial