Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations

Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane... In this study, new thin film composite membranes were synthesized from polydimethylsiloxane/zeolite 4A (PDMS/zeolite 4A) as a mixed matrix thin selective layer coated on a polyacrylonitrile ultrafiltration membrane sublayer attached on a non-woven polyester fabric support in order to carry out CO2 removal. The scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, atomic force microscopy, dynamic light scattering, Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis were applied to evaluate the particle/membrane properties. The effect of zeolite loading (0–30 wt%), feed pressure (1–5 bar), and polymer concentration in coating solution (5–10 wt%) were investigated on the CO2, N2, and CH4 permeations. SEM images of the composite membranes showed good adhesion and distribution in 15 wt% zeolite 4A. Furthermore, FTIR spectra of the composite membranes indicated that no chemical interaction exists between the particles and the polymer matrix. Gas permeation results showed that with the addition of zeolite particles into the polymer matrix, permeance of all gases increase compared to the pure PDMS membrane. The optimum performance, i.e. CO2 permeance of 3457 GPU and selectivity of 23.8 for CO2/N2 and 8.2 for CO2/CH4, was achieved with a membrane composed of 15 wt% zeolite 4A loadings, 5 wt% polymer concentration in coating solution, and at a pressure of 3 bar. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations

Loading next page...
 
/lp/springer_journal/preparation-and-characterization-of-pdms-zeolite-4a-pan-mixed-matrix-MludBL0Egk
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2806-2
Publisher site
See Article on Publisher Site

Abstract

In this study, new thin film composite membranes were synthesized from polydimethylsiloxane/zeolite 4A (PDMS/zeolite 4A) as a mixed matrix thin selective layer coated on a polyacrylonitrile ultrafiltration membrane sublayer attached on a non-woven polyester fabric support in order to carry out CO2 removal. The scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, atomic force microscopy, dynamic light scattering, Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis were applied to evaluate the particle/membrane properties. The effect of zeolite loading (0–30 wt%), feed pressure (1–5 bar), and polymer concentration in coating solution (5–10 wt%) were investigated on the CO2, N2, and CH4 permeations. SEM images of the composite membranes showed good adhesion and distribution in 15 wt% zeolite 4A. Furthermore, FTIR spectra of the composite membranes indicated that no chemical interaction exists between the particles and the polymer matrix. Gas permeation results showed that with the addition of zeolite particles into the polymer matrix, permeance of all gases increase compared to the pure PDMS membrane. The optimum performance, i.e. CO2 permeance of 3457 GPU and selectivity of 23.8 for CO2/N2 and 8.2 for CO2/CH4, was achieved with a membrane composed of 15 wt% zeolite 4A loadings, 5 wt% polymer concentration in coating solution, and at a pressure of 3 bar.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off