Preparation and characterization of Ag@AgCl-doped fly ash cenospheres for photocatalytic applications

Preparation and characterization of Ag@AgCl-doped fly ash cenospheres for photocatalytic... A plasmonic photocatalyst composite based on Ag@AgCl and fly ash cenospheres was successfully prepared through a two-step method. X-ray diffraction analysis, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, and diffuse reflectance ultraviolet–visible spectroscopy were used to determine the structure and optical properties of the Ag@AgCl-doped fly ash cenospheres (denoted Ag@AgCl/FAC). SEM micrographs showed that Ag@AgCl was well deposited on the surface of the fly ash cenospheres. Photocatalytic experiment results showed that the degradation ratio increased with increasing dosage of Ag@AgCl/fly ash cenospheres; proper concentration of pollutant was important for the photocatalytic reaction for given amount of catalyst. Moreover, improved degradation of rhodamine B was observed at acidic conditions under visible-light irradiation. This excellent catalytic ability is mainly attributed to the formation of Ag nanoparticles on the surface of the fly ash cenospheres and the high separation efficiency of photoelectron–hole pairs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Preparation and characterization of Ag@AgCl-doped fly ash cenospheres for photocatalytic applications

Loading next page...
 
/lp/springer_journal/preparation-and-characterization-of-ag-agcl-doped-fly-ash-cenospheres-4Dm3DsBVk3
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2647-z
Publisher site
See Article on Publisher Site

Abstract

A plasmonic photocatalyst composite based on Ag@AgCl and fly ash cenospheres was successfully prepared through a two-step method. X-ray diffraction analysis, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, and diffuse reflectance ultraviolet–visible spectroscopy were used to determine the structure and optical properties of the Ag@AgCl-doped fly ash cenospheres (denoted Ag@AgCl/FAC). SEM micrographs showed that Ag@AgCl was well deposited on the surface of the fly ash cenospheres. Photocatalytic experiment results showed that the degradation ratio increased with increasing dosage of Ag@AgCl/fly ash cenospheres; proper concentration of pollutant was important for the photocatalytic reaction for given amount of catalyst. Moreover, improved degradation of rhodamine B was observed at acidic conditions under visible-light irradiation. This excellent catalytic ability is mainly attributed to the formation of Ag nanoparticles on the surface of the fly ash cenospheres and the high separation efficiency of photoelectron–hole pairs.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off