Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis

Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis Reverse draw solute diffusion not only reduces the water flux in forward osmosis (FO), but also contaminates the feed solution and eventually increases the regeneration cost of draw solution. In the present study, a new polyelectrolyte was synthesized as FO draw solute to address this problem. Acrylic acid and sodium p-styrenesulfonate monomers with hydrophilic group were used to fabricate carboxylate polyelectrolyte through free radical polymerization reaction. Results demonstrated that the osmotic pressure of carboxylate polyelectrolyte solution had a good linear relationship with concentration, and the viscosity of 0.18 g/mL solution was less than 5.4 cP. Active layer facing draw solution produced the initial water flux of 11.77 LMH and active layer facing feed solution yielded the initial water flux of 6.68 LMH when the concentration of draw solution was 0.18 g/mL. The reverse solute flux was around 1 gMH, and specific reverse solute flux of 0.18 g/mL carboxylate polyelectrolyte draw solution was 0.11 g/L which was much lower than that of traditional inorganic salts. Finally, diluted draw solution was regenerated via ultrafiltration, and the recovery efficiency of 94.78% was achieved. So, carboxylate polyelectrolyte can be suitable draw solute for FO. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis

Loading next page...
 
/lp/springer_journal/preparation-and-assessment-of-carboxylate-polyelectrolyte-as-draw-gdr4RSv8da
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0930-1
Publisher site
See Article on Publisher Site

Abstract

Reverse draw solute diffusion not only reduces the water flux in forward osmosis (FO), but also contaminates the feed solution and eventually increases the regeneration cost of draw solution. In the present study, a new polyelectrolyte was synthesized as FO draw solute to address this problem. Acrylic acid and sodium p-styrenesulfonate monomers with hydrophilic group were used to fabricate carboxylate polyelectrolyte through free radical polymerization reaction. Results demonstrated that the osmotic pressure of carboxylate polyelectrolyte solution had a good linear relationship with concentration, and the viscosity of 0.18 g/mL solution was less than 5.4 cP. Active layer facing draw solution produced the initial water flux of 11.77 LMH and active layer facing feed solution yielded the initial water flux of 6.68 LMH when the concentration of draw solution was 0.18 g/mL. The reverse solute flux was around 1 gMH, and specific reverse solute flux of 0.18 g/mL carboxylate polyelectrolyte draw solution was 0.11 g/L which was much lower than that of traditional inorganic salts. Finally, diluted draw solution was regenerated via ultrafiltration, and the recovery efficiency of 94.78% was achieved. So, carboxylate polyelectrolyte can be suitable draw solute for FO.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off