Preillumination of excised spinach leaves with red light increases resistance of photosynthetic apparatus to UV radiation

Preillumination of excised spinach leaves with red light increases resistance of photosynthetic... Leaves of spinach (Spinacia oleracea, cv. Ispolinskii) were preilluminated by low-intensity light (1.0 and 1.5 W/m2, 0.5–3.0 h) with wavelengths ranging from 530 to 730 nm to study the effect of this pretreatment on the activity of photosystem II (PS II), content of photosynthetic pigments, and peroxidase activity in excised leaves exposed to UV-A irradiation. Irradiation of leaves with UV-A suppressed the activity of PS II, reduced the content of chlorophylls (a + b) and carotenoids, and increased the peroxidase activity. Preillumination of leaves with red light (RL, 620–660 nm) alleviated the inhibitory action of UV-A on PS II activity and reduced the pigment losses but increased the peroxidase activity in leaves and thylakoid membrane preparations, as compared to the respective effects of UV-A light applied without preillumination. The preexposure of leaves to red light alternating with far-red light (FR, 730 nm) removed partly the influence of RL on the parameters under study, which indicates the involvement of phytochrome active form, PFR into stress-induced defense responses in leaves. It is supposed that elevated resistance of photosynthetic apparatus to UV-A radiation was formed with the involvement of PFR and the antioxidant system induced by oxidative stress after preillumination of leaves with red light http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Preillumination of excised spinach leaves with red light increases resistance of photosynthetic apparatus to UV radiation

Loading next page...
 
/lp/springer_journal/preillumination-of-excised-spinach-leaves-with-red-light-increases-0C4q1XlI7j
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712050093
Publisher site
See Article on Publisher Site

Abstract

Leaves of spinach (Spinacia oleracea, cv. Ispolinskii) were preilluminated by low-intensity light (1.0 and 1.5 W/m2, 0.5–3.0 h) with wavelengths ranging from 530 to 730 nm to study the effect of this pretreatment on the activity of photosystem II (PS II), content of photosynthetic pigments, and peroxidase activity in excised leaves exposed to UV-A irradiation. Irradiation of leaves with UV-A suppressed the activity of PS II, reduced the content of chlorophylls (a + b) and carotenoids, and increased the peroxidase activity. Preillumination of leaves with red light (RL, 620–660 nm) alleviated the inhibitory action of UV-A on PS II activity and reduced the pigment losses but increased the peroxidase activity in leaves and thylakoid membrane preparations, as compared to the respective effects of UV-A light applied without preillumination. The preexposure of leaves to red light alternating with far-red light (FR, 730 nm) removed partly the influence of RL on the parameters under study, which indicates the involvement of phytochrome active form, PFR into stress-induced defense responses in leaves. It is supposed that elevated resistance of photosynthetic apparatus to UV-A radiation was formed with the involvement of PFR and the antioxidant system induced by oxidative stress after preillumination of leaves with red light

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off