Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction

Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate... TRPV1 is a thermo-sensitive ion channel involved in neurosensory and other physiological functions. The trans-membrane helices of TRPV1 undergo quick and complex conformational changes governed by thermodynamic parameters and membrane components leading to channel opening. However, the molecular mechanisms underlying such events are poorly understood. Here we analysed the molecular evolution of TRPV1 at the lipid-water-interface region (LWI), typically defined as a layer of 6 Å thickness on each side of the membrane with less availability of free water. Amino acids demarcating the end of the trans-membrane helices are highly conserved. Residues present in the inner leaflet are more conserved and have been preferentially selected over others. Amino acids with snorkeling properties (Arginine and Tyrosine) undergo specific selection during the vertebrate evolution in a cholesterol-dependent and/or body temperature manner. Results suggest that H-bond formation between the OH- group of cholesterol and side chain of Arg557 or Arg575 at the inner leaflet is a critical parameter that can regulate channel functions. Different LWI mutants of TRPV1 have altered membrane localization and deficient colocalization with lipid raft markers. These findings may help to understand the lipid-protein interactions, and molecular basis of different neuronal functions. Such findings may have broad importance in the context of differential sensory responses, pathophysiologies, and application of pharmacological drugs such as anaesthetics acting on TRPVs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction

Loading next page...
 
/lp/springer_journal/preferential-selection-of-arginine-at-the-lipid-water-interface-of-vRuucwUGof
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16780-w
Publisher site
See Article on Publisher Site

Abstract

TRPV1 is a thermo-sensitive ion channel involved in neurosensory and other physiological functions. The trans-membrane helices of TRPV1 undergo quick and complex conformational changes governed by thermodynamic parameters and membrane components leading to channel opening. However, the molecular mechanisms underlying such events are poorly understood. Here we analysed the molecular evolution of TRPV1 at the lipid-water-interface region (LWI), typically defined as a layer of 6 Å thickness on each side of the membrane with less availability of free water. Amino acids demarcating the end of the trans-membrane helices are highly conserved. Residues present in the inner leaflet are more conserved and have been preferentially selected over others. Amino acids with snorkeling properties (Arginine and Tyrosine) undergo specific selection during the vertebrate evolution in a cholesterol-dependent and/or body temperature manner. Results suggest that H-bond formation between the OH- group of cholesterol and side chain of Arg557 or Arg575 at the inner leaflet is a critical parameter that can regulate channel functions. Different LWI mutants of TRPV1 have altered membrane localization and deficient colocalization with lipid raft markers. These findings may help to understand the lipid-protein interactions, and molecular basis of different neuronal functions. Such findings may have broad importance in the context of differential sensory responses, pathophysiologies, and application of pharmacological drugs such as anaesthetics acting on TRPVs.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off