Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence

Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence The preferential concentration of poly-dispersed water droplets with a range of Sauter mean diameters between 25 and 95 μm has been studied experimentally in stationary homogeneous isotropic turbulence with four different intensities, characterized by turbulent Reynolds numbers based on Taylor microscale, of Re λ  = 107, 145, 185 and 213. The image processing method of recorded scattered light intensity images from droplets is described and its ability to identify droplets is assessed in terms of image quality. The influence of image processing parameters on measured characteristics of droplet clustering is evaluated. The radial distribution function (RDF) and 2D Voronoï analysis quantified the magnitude of preferential droplet concentration and the results from both methods agreed well. RDF showed that the characteristic length scale of resulting droplet clusters varies between 20 and 30 times the Kolmogorov length scale over all the experimental conditions. It was found that the preferential concentration is more appropriately described by a Stokes number, based on various representative diameters, namely the arithmetic mean diameter, D 10, or the diameter, DN60 %, below which 60 % of the total droplet number in the spray is present, or the diameter, DV5 %, which carries 5 % of the total liquid volume in the spray. The magnitude of droplet preferential concentration was maximum when the proposed Stokes number was around unity for all experimental conditions. Little dependence of the magnitude of preferential concentration on turbulent Reynolds numbers was found, in contrast to the recent DNS findings (Tagawa et al. in J Fluid Mech 693:201–215, 2012). Experiments in Fluids Springer Journals

Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence

Loading next page...
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial