Predominance of Attached Versus Suspended Growth in a Mixed-Growth, Continuous-Flow Biological Reactor Treating Primary-Treated Petrochemical Wastewater

Predominance of Attached Versus Suspended Growth in a Mixed-Growth, Continuous-Flow Biological... In this study, a laboratory-scale continuous-flow, mixed-growth biological treatment process, based on the integrated fixed-film activated sludge (IFAS) process, was configured using granular activated carbon as the attached-growth media. With potential to degrade target organics, the application of this process for treating the petrochemical industry wastewater may provide a flexible, more efficient, and inexpensive replacement for the activated sludge and other biological treatment processes. The laboratory-scale IFAS configuration was experimented to evaluate the process ability to enhance the biodegradation process utilizing both suspended growth and attached growth, to evaluate its ability to remove nitrogen and phosphorous, and to identify conditions of predominance of attached versus suspended growth. Ratios of attached to suspended growth reached 3 at steady-state conditions; the laboratory-scale flow-through column reached a steady-state operation in 1–2 h, promising smaller tank volumes on a large-scale application. The organics’ removal rates were found to be sensitive to higher initial concentrations and higher hydraulic loading within the range tested in this work. However, nitrogen and phosphorous removal rates were low, and it was mainly attributed to the low total phosphorous-to-chemical oxygen demand ratio representing the bottleneck for upscaling this process. Keywords Industrial wastewater treatment · Petrochemical wastewater · Mixed-growth biological http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal for Science and Engineering Springer Journals

Predominance of Attached Versus Suspended Growth in a Mixed-Growth, Continuous-Flow Biological Reactor Treating Primary-Treated Petrochemical Wastewater

Loading next page...
 
/lp/springer_journal/predominance-of-attached-versus-suspended-growth-in-a-mixed-growth-mpX8N0ye0z
Publisher
Springer Journals
Copyright
Copyright © 2018 by King Fahd University of Petroleum & Minerals
Subject
Engineering; Engineering, general; Science, Humanities and Social Sciences, multidisciplinary
ISSN
1319-8025
eISSN
2191-4281
D.O.I.
10.1007/s13369-018-3315-y
Publisher site
See Article on Publisher Site

Abstract

In this study, a laboratory-scale continuous-flow, mixed-growth biological treatment process, based on the integrated fixed-film activated sludge (IFAS) process, was configured using granular activated carbon as the attached-growth media. With potential to degrade target organics, the application of this process for treating the petrochemical industry wastewater may provide a flexible, more efficient, and inexpensive replacement for the activated sludge and other biological treatment processes. The laboratory-scale IFAS configuration was experimented to evaluate the process ability to enhance the biodegradation process utilizing both suspended growth and attached growth, to evaluate its ability to remove nitrogen and phosphorous, and to identify conditions of predominance of attached versus suspended growth. Ratios of attached to suspended growth reached 3 at steady-state conditions; the laboratory-scale flow-through column reached a steady-state operation in 1–2 h, promising smaller tank volumes on a large-scale application. The organics’ removal rates were found to be sensitive to higher initial concentrations and higher hydraulic loading within the range tested in this work. However, nitrogen and phosphorous removal rates were low, and it was mainly attributed to the low total phosphorous-to-chemical oxygen demand ratio representing the bottleneck for upscaling this process. Keywords Industrial wastewater treatment · Petrochemical wastewater · Mixed-growth biological

Journal

Arabian Journal for Science and EngineeringSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off