Prediction of Wetting-Induced Swelling Using Effective Stress in an Unsaturated Kaolin

Prediction of Wetting-Induced Swelling Using Effective Stress in an Unsaturated Kaolin The wetting-induced swelling of unsaturated clayey soils can cause serious damages to buildings, bridges, and other infrastructure and may jeopardize the integrity of these structures. A model is required to predict these volume changes and be considered in the analysis and design of the structures. The volume change induced by wetting depends on many factors such as initial suction, net stress, effective stress, soil fabric, and suction history. Therefore, predicting the wetting-induced swelling is complicated. One of the tools for predicting the volume changes is the effective stress principle. However, the adoption of stress variables for prediction of unsaturated soil behavior is not consensus among the researchers in the geotechnical engineering field. In this paper, we employ the effective stress as a variable to predict the wetting-induced swelling of a commercial kaolin in unsaturated state. A series of oedometric tests are performed on 12 statically compacted kaolin specimens, prepared at three specific dry densities and various moisture contents. The unsaturated specimens are initially consolidated under certain vertical stress and then saturated while the total vertical stress is held constant. The wetting-induced swelling is measured at the end of saturation. One cycle of unloading–reloading is applied to the saturated specimens, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Iranian Journal of Science and Technology, Transactions of Civil Engineering Springer Journals

Prediction of Wetting-Induced Swelling Using Effective Stress in an Unsaturated Kaolin

Loading next page...
 
/lp/springer_journal/prediction-of-wetting-induced-swelling-using-effective-stress-in-an-983a9wkSII
Publisher
Springer Journals
Copyright
Copyright © 2018 by Shiraz University
Subject
Engineering; Civil Engineering
ISSN
2228-6160
eISSN
2364-1843
D.O.I.
10.1007/s40996-018-0118-z
Publisher site
See Article on Publisher Site

Abstract

The wetting-induced swelling of unsaturated clayey soils can cause serious damages to buildings, bridges, and other infrastructure and may jeopardize the integrity of these structures. A model is required to predict these volume changes and be considered in the analysis and design of the structures. The volume change induced by wetting depends on many factors such as initial suction, net stress, effective stress, soil fabric, and suction history. Therefore, predicting the wetting-induced swelling is complicated. One of the tools for predicting the volume changes is the effective stress principle. However, the adoption of stress variables for prediction of unsaturated soil behavior is not consensus among the researchers in the geotechnical engineering field. In this paper, we employ the effective stress as a variable to predict the wetting-induced swelling of a commercial kaolin in unsaturated state. A series of oedometric tests are performed on 12 statically compacted kaolin specimens, prepared at three specific dry densities and various moisture contents. The unsaturated specimens are initially consolidated under certain vertical stress and then saturated while the total vertical stress is held constant. The wetting-induced swelling is measured at the end of saturation. One cycle of unloading–reloading is applied to the saturated specimens,

Journal

Iranian Journal of Science and Technology, Transactions of Civil EngineeringSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off