Prediction of tool tip dynamics for generalized milling cutters using the 3D model of the tool body

Prediction of tool tip dynamics for generalized milling cutters using the 3D model of the tool body In general, chatter is the main limitation to proper material removal in milling operations. Stability lobes are good tools to determine chatter-free cutting conditions in terms of spindle speed and cutting depth, which require the frequency response function (FRF) at the tool tip to be known. There are experimental methods to measure the tool tip FRF but this may be time consuming or even impossible for each tool and tool holder combination. Receptance coupling substructure analysis (RCSA) is a widely used approach to predict tool tip dynamics. This paper proposes the use of the RCSA approach with a stereolithographic (STL) slicing algorithm to enable the exact calculation of cross sectional properties such as area and area moment of inertia of the cutting tool from its 3D model opposed to the approximation methods. So that, the effect of flutes on cutting tool structure introduced in an exact manner and the RCSA approach becomes feasible for more complicated tool geometries with varying cross-sectional properties, i.e., tapered ball end mills, end mills with variable flute geometries, and so on. The solid model of the tool can be available by either the tool manufacturer or 3D measurement. Although, at the presence of 3D models, finite element methods (FEM) offer accurate simulation of the dynamic response for solid bodies, they suffer from the compromise between accuracy and computation time, as high number of elements is needed for accuracy. Thus, the use of analytical methods where possible improves the simulation time significantly. The proposed STL slicing algorithm is integrated with a previously developed RCSA method. The experimental results show that the proposed algorithm works more accurate in calculation of the cross-sectional properties and hence free-free response of the tool compared to the existing arc approximation methods. It is also shown that the proposed approach performs better than FEM solutions in terms of the computation time and the compromise between accuracy and computation performance. Finally, the proposed approach in prediction of tool tip dynamics for a robotic machining platform. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Prediction of tool tip dynamics for generalized milling cutters using the 3D model of the tool body

Loading next page...
 
/lp/springer_journal/prediction-of-tool-tip-dynamics-for-generalized-milling-cutters-using-DYRvKemdKP
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1286-x
Publisher site
See Article on Publisher Site

Abstract

In general, chatter is the main limitation to proper material removal in milling operations. Stability lobes are good tools to determine chatter-free cutting conditions in terms of spindle speed and cutting depth, which require the frequency response function (FRF) at the tool tip to be known. There are experimental methods to measure the tool tip FRF but this may be time consuming or even impossible for each tool and tool holder combination. Receptance coupling substructure analysis (RCSA) is a widely used approach to predict tool tip dynamics. This paper proposes the use of the RCSA approach with a stereolithographic (STL) slicing algorithm to enable the exact calculation of cross sectional properties such as area and area moment of inertia of the cutting tool from its 3D model opposed to the approximation methods. So that, the effect of flutes on cutting tool structure introduced in an exact manner and the RCSA approach becomes feasible for more complicated tool geometries with varying cross-sectional properties, i.e., tapered ball end mills, end mills with variable flute geometries, and so on. The solid model of the tool can be available by either the tool manufacturer or 3D measurement. Although, at the presence of 3D models, finite element methods (FEM) offer accurate simulation of the dynamic response for solid bodies, they suffer from the compromise between accuracy and computation time, as high number of elements is needed for accuracy. Thus, the use of analytical methods where possible improves the simulation time significantly. The proposed STL slicing algorithm is integrated with a previously developed RCSA method. The experimental results show that the proposed algorithm works more accurate in calculation of the cross-sectional properties and hence free-free response of the tool compared to the existing arc approximation methods. It is also shown that the proposed approach performs better than FEM solutions in terms of the computation time and the compromise between accuracy and computation performance. Finally, the proposed approach in prediction of tool tip dynamics for a robotic machining platform.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off