Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Prediction of the vertical force during FSW of AZ31 magnesium alloy sheets using an artificial neural network-based model

Prediction of the vertical force during FSW of AZ31 magnesium alloy sheets using an artificial... A multivariable empirical model based on an artificial neural network (ANN) was developed in order to predict the vertical force occurring during friction stir welding (FSW) of sheets in AZ31 magnesium alloy. To this purpose, FSW experiments were performed at different values of rotational and welding speeds, and the vertical force versus time curve was recorded during the different stages of the process by means of a dedicated sandwich dynamometer. Such results were used in the training stage of the artificial neural network-based model developed to predict vertical force versus time curves. A multi-layer feed forward ANN, using the back-propagation algorithm, consisting of the input layer with four input parameters (rotational speed, welding speed, rotational speed to welding speed ratio and processing time), two hidden layers with four neurons each, and the output layer with the vertical force as output, was built and trained. The generalization capability of the ANN was tested using a two-step procedure: in the former, the leave-one-out cross-validation method was used whilst, in the latter, curves not included in the training dataset were taken into account. The low values of the relative error and average absolute relative error, and the high correlation coefficients between predicted and experimental results have proven the excellent capability of the artificial neural network in modeling complex shape of the curve and in capturing the effect of the process parameters on the vertical force without a priori knowledge of the complex microstructural and mechanical mechanisms taking place during friction stir welding. Finally, the relationship between vertical force and processing time, at different welding and rotational speeds, was also predicted using the support vector machine algorithm and the results were compared with those given by the ANN-based model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computing and Applications Springer Journals

Prediction of the vertical force during FSW of AZ31 magnesium alloy sheets using an artificial neural network-based model

Loading next page...
 
/lp/springer_journal/prediction-of-the-vertical-force-during-fsw-of-az31-magnesium-alloy-KQPCeON7f5

References (56)

Publisher
Springer Journals
Copyright
Copyright © 2018 by The Natural Computing Applications Forum
Subject
Computer Science; Artificial Intelligence; Data Mining and Knowledge Discovery; Probability and Statistics in Computer Science; Computational Science and Engineering; Image Processing and Computer Vision; Computational Biology/Bioinformatics
ISSN
0941-0643
eISSN
1433-3058
DOI
10.1007/s00521-018-3562-6
Publisher site
See Article on Publisher Site

Abstract

A multivariable empirical model based on an artificial neural network (ANN) was developed in order to predict the vertical force occurring during friction stir welding (FSW) of sheets in AZ31 magnesium alloy. To this purpose, FSW experiments were performed at different values of rotational and welding speeds, and the vertical force versus time curve was recorded during the different stages of the process by means of a dedicated sandwich dynamometer. Such results were used in the training stage of the artificial neural network-based model developed to predict vertical force versus time curves. A multi-layer feed forward ANN, using the back-propagation algorithm, consisting of the input layer with four input parameters (rotational speed, welding speed, rotational speed to welding speed ratio and processing time), two hidden layers with four neurons each, and the output layer with the vertical force as output, was built and trained. The generalization capability of the ANN was tested using a two-step procedure: in the former, the leave-one-out cross-validation method was used whilst, in the latter, curves not included in the training dataset were taken into account. The low values of the relative error and average absolute relative error, and the high correlation coefficients between predicted and experimental results have proven the excellent capability of the artificial neural network in modeling complex shape of the curve and in capturing the effect of the process parameters on the vertical force without a priori knowledge of the complex microstructural and mechanical mechanisms taking place during friction stir welding. Finally, the relationship between vertical force and processing time, at different welding and rotational speeds, was also predicted using the support vector machine algorithm and the results were compared with those given by the ANN-based model.

Journal

Neural Computing and ApplicationsSpringer Journals

Published: May 29, 2018

There are no references for this article.