Prediction of the Peak Shear Strength of Sandstone and Mudstone Joints Infilled with High Water–Cement Ratio Grouts

Prediction of the Peak Shear Strength of Sandstone and Mudstone Joints Infilled with High... There are very few studies on the peak shear strength of cement-infilled joints, despite it being a key parameter in the grouting technique. To quantify this strength, the average elastic modulus of hardened cement pastes with a high water–cement ratio (w/c) has been determined by using a homogenization method, in which the bleeding ratio is includes. Based on a scanning electron microscope analysis of the micromorphology of the rock joint surface and study of the interfacial transition zone, the mechanisms of the microscopic bond shear failure at the interfaces between the cement pastes and rocks have been deduced, in which the effect of the macroscopic roughness has not been taken into consideration. Based on the JRC–JCS model of unfilled joints, which takes the macroscopic roughness into consideration, together with the microscopic bond shear model, a model has been developed that can predict the peak shear strength of cement-infilled joints of sandstone and mudstone. The predictions have been verified by experimental results. The results show that if the w/c is too low, then the grouting can weaken the rock mass. If the w/c is appropriate, then the increase to the peak shear strength can be determined by the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

Prediction of the Peak Shear Strength of Sandstone and Mudstone Joints Infilled with High Water–Cement Ratio Grouts

Loading next page...
 
/lp/springer_journal/prediction-of-the-peak-shear-strength-of-sandstone-and-mudstone-joints-MB8MSoNmd7
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1225-z
Publisher site
See Article on Publisher Site

Abstract

There are very few studies on the peak shear strength of cement-infilled joints, despite it being a key parameter in the grouting technique. To quantify this strength, the average elastic modulus of hardened cement pastes with a high water–cement ratio (w/c) has been determined by using a homogenization method, in which the bleeding ratio is includes. Based on a scanning electron microscope analysis of the micromorphology of the rock joint surface and study of the interfacial transition zone, the mechanisms of the microscopic bond shear failure at the interfaces between the cement pastes and rocks have been deduced, in which the effect of the macroscopic roughness has not been taken into consideration. Based on the JRC–JCS model of unfilled joints, which takes the macroscopic roughness into consideration, together with the microscopic bond shear model, a model has been developed that can predict the peak shear strength of cement-infilled joints of sandstone and mudstone. The predictions have been verified by experimental results. The results show that if the w/c is too low, then the grouting can weaken the rock mass. If the w/c is appropriate, then the increase to the peak shear strength can be determined by the model.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Apr 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off