Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases

Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype... Cis-QTLs are important candidates for any other trait that maps to the same locus. In this article we have used publicly available databases and a small microarray data set to “map” cis-QTLs in the ILS and ISS inbred mouse strains without the need to generate microarray data from an ILSXISS segregating population. Expression data were obtained from brains of C57BL/6, DBA/2, ILS, and ISS. Cis-QTLs were mapped for the 760 transcripts found to be differentially expressed between the C57BL/6 and DBA/2 using expression data previously obtained from the BXD RIs. The 469 detected cis-QTLs were then examined for SNP haplotypes and expression patterns that could relate the ILS and ISS to the C57BL/6 and DBA/2. Of the 338 cis-QTL transcripts that had informative haplotypes, 189 were significantly different between the ILS and ISS with 184 showing segregation of haplotype with expression. These were considered to be probable cis-QTLs in the ILS and ISS. There were almost certainly additional ILS/ISS cis-QTLs among the other transcripts with informative haplotypes, but in the absence of an ILS/ISS expression difference, the level of confidence was reduced. Several of the putative ILS/ISS cis-QTLs are considered important candidate genes because they are linked to ILS/ISS behavioral QTLs. A potential ascertainment bias related to strain-dependent target sequences was observed suggesting that as much as 35% of the cis-QTLs were hybridization artifacts. Nonetheless, the results suggest that this approach is an economical and widely applicable method for mapping cis-QTLs in a strain pair of interest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases

Loading next page...
 
/lp/springer_journal/prediction-of-cis-qtls-in-a-pair-of-inbred-mouse-strains-with-the-use-IJTd8jQYRI
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0178-9
Publisher site
See Article on Publisher Site

Abstract

Cis-QTLs are important candidates for any other trait that maps to the same locus. In this article we have used publicly available databases and a small microarray data set to “map” cis-QTLs in the ILS and ISS inbred mouse strains without the need to generate microarray data from an ILSXISS segregating population. Expression data were obtained from brains of C57BL/6, DBA/2, ILS, and ISS. Cis-QTLs were mapped for the 760 transcripts found to be differentially expressed between the C57BL/6 and DBA/2 using expression data previously obtained from the BXD RIs. The 469 detected cis-QTLs were then examined for SNP haplotypes and expression patterns that could relate the ILS and ISS to the C57BL/6 and DBA/2. Of the 338 cis-QTL transcripts that had informative haplotypes, 189 were significantly different between the ILS and ISS with 184 showing segregation of haplotype with expression. These were considered to be probable cis-QTLs in the ILS and ISS. There were almost certainly additional ILS/ISS cis-QTLs among the other transcripts with informative haplotypes, but in the absence of an ILS/ISS expression difference, the level of confidence was reduced. Several of the putative ILS/ISS cis-QTLs are considered important candidate genes because they are linked to ILS/ISS behavioral QTLs. A potential ascertainment bias related to strain-dependent target sequences was observed suggesting that as much as 35% of the cis-QTLs were hybridization artifacts. Nonetheless, the results suggest that this approach is an economical and widely applicable method for mapping cis-QTLs in a strain pair of interest.

Journal

Mammalian GenomeSpringer Journals

Published: Jun 12, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off