Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases

Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype... Cis-QTLs are important candidates for any other trait that maps to the same locus. In this article we have used publicly available databases and a small microarray data set to “map” cis-QTLs in the ILS and ISS inbred mouse strains without the need to generate microarray data from an ILSXISS segregating population. Expression data were obtained from brains of C57BL/6, DBA/2, ILS, and ISS. Cis-QTLs were mapped for the 760 transcripts found to be differentially expressed between the C57BL/6 and DBA/2 using expression data previously obtained from the BXD RIs. The 469 detected cis-QTLs were then examined for SNP haplotypes and expression patterns that could relate the ILS and ISS to the C57BL/6 and DBA/2. Of the 338 cis-QTL transcripts that had informative haplotypes, 189 were significantly different between the ILS and ISS with 184 showing segregation of haplotype with expression. These were considered to be probable cis-QTLs in the ILS and ISS. There were almost certainly additional ILS/ISS cis-QTLs among the other transcripts with informative haplotypes, but in the absence of an ILS/ISS expression difference, the level of confidence was reduced. Several of the putative ILS/ISS cis-QTLs are considered important candidate genes because they are linked to ILS/ISS behavioral QTLs. A potential ascertainment bias related to strain-dependent target sequences was observed suggesting that as much as 35% of the cis-QTLs were hybridization artifacts. Nonetheless, the results suggest that this approach is an economical and widely applicable method for mapping cis-QTLs in a strain pair of interest. Mammalian Genome Springer Journals

Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases

Loading next page...
Copyright © 2006 by Springer Science+Business Media, Inc.
Life Sciences; Anatomy; Zoology; Cell Biology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial