Predicting WWW surfing using multiple evidence combination

Predicting WWW surfing using multiple evidence combination The improvement of many applications such as web search, latency reduction, and personalization/ recommendation systems depends on surfing prediction. Predicting user surfing paths involves tradeoffs between model complexity and predictive accuracy. In this paper, we combine two classification techniques, namely, the Markov model and Support Vector Machines (SVM), to resolve prediction using Dempster’s rule. Such fusion overcomes the inability of the Markov model in predicting the unseen data as well as overcoming the problem of multiclassification in the case of SVM, especially when dealing with large number of classes. We apply feature extraction to increase the power of discrimination of SVM. In addition, during prediction we employ domain knowledge to reduce the number of classifiers for the improvement of accuracy and the reduction of prediction time. We demonstrate the effectiveness of our hybrid approach by comparing our results with widely used techniques, namely, SVM, the Markov model, and association rule mining. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Predicting WWW surfing using multiple evidence combination

Loading next page...
 
/lp/springer_journal/predicting-www-surfing-using-multiple-evidence-combination-NqyPn00Ucl
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0014-1
Publisher site
See Article on Publisher Site

Abstract

The improvement of many applications such as web search, latency reduction, and personalization/ recommendation systems depends on surfing prediction. Predicting user surfing paths involves tradeoffs between model complexity and predictive accuracy. In this paper, we combine two classification techniques, namely, the Markov model and Support Vector Machines (SVM), to resolve prediction using Dempster’s rule. Such fusion overcomes the inability of the Markov model in predicting the unseen data as well as overcoming the problem of multiclassification in the case of SVM, especially when dealing with large number of classes. We apply feature extraction to increase the power of discrimination of SVM. In addition, during prediction we employ domain knowledge to reduce the number of classifiers for the improvement of accuracy and the reduction of prediction time. We demonstrate the effectiveness of our hybrid approach by comparing our results with widely used techniques, namely, SVM, the Markov model, and association rule mining.

Journal

The VLDB JournalSpringer Journals

Published: May 1, 2008

References

  • Hybrid recommender systems: survey and experiments
    Burke, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off