Predicting the Influence of Streamflow on Migration and Spawning of a Threatened Diadromous Fish, the Australian Grayling Prototroctes Maraena

Predicting the Influence of Streamflow on Migration and Spawning of a Threatened Diadromous Fish,... The development of effective strategies to restore the biological functioning of aquatic ecosystems with altered flow regimes requires a detailed understanding of flow-ecology requirements, which is unfortunately lacking in many cases. By understanding the flow conditions required to initiate critical life history events such as migration and spawning, it is possible to mitigate the threats posed by regulated river flow by providing targeted environmental flow releases from impoundments. In this study, we examined the influence of hydrological variables (e.g., flow magnitude), temporal variables (e.g., day of year) and spatial variables (e.g., longitudinal position of fish) on two key life history events (migration to spawning grounds and spawning activity) for a threatened diadromous fish (Australian grayling Prototroctes maraena) using data collected from 2008 to 2015 in the Bunyip–Tarago river system in Victoria. Our analyses revealed that flow changes act as a cue to downstream migration, but movement responses differed spatially: fish in the upper catchment showed a more specific requirement for rising discharge to initiate migration than fish in the lower catchment. Egg concentrations peaked in May when weekly flows increased relative to the median flow during a given spawning period. This information has recently been incorporated into the development of targeted environmental flows to facilitate migration and spawning by Australian grayling in the Bunyip–Tarago river system and other coastal systems in Victoria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Management Springer Journals

Predicting the Influence of Streamflow on Migration and Spawning of a Threatened Diadromous Fish, the Australian Grayling Prototroctes Maraena

Loading next page...
 
/lp/springer_journal/predicting-the-influence-of-streamflow-on-migration-and-spawning-of-a-TbNtgaXe9J
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Environment; Environmental Management; Ecology; Nature Conservation; Atmospheric Protection/Air Quality Control/Air Pollution; Forestry Management; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0364-152X
eISSN
1432-1009
D.O.I.
10.1007/s00267-017-0853-0
Publisher site
See Article on Publisher Site

Abstract

The development of effective strategies to restore the biological functioning of aquatic ecosystems with altered flow regimes requires a detailed understanding of flow-ecology requirements, which is unfortunately lacking in many cases. By understanding the flow conditions required to initiate critical life history events such as migration and spawning, it is possible to mitigate the threats posed by regulated river flow by providing targeted environmental flow releases from impoundments. In this study, we examined the influence of hydrological variables (e.g., flow magnitude), temporal variables (e.g., day of year) and spatial variables (e.g., longitudinal position of fish) on two key life history events (migration to spawning grounds and spawning activity) for a threatened diadromous fish (Australian grayling Prototroctes maraena) using data collected from 2008 to 2015 in the Bunyip–Tarago river system in Victoria. Our analyses revealed that flow changes act as a cue to downstream migration, but movement responses differed spatially: fish in the upper catchment showed a more specific requirement for rising discharge to initiate migration than fish in the lower catchment. Egg concentrations peaked in May when weekly flows increased relative to the median flow during a given spawning period. This information has recently been incorporated into the development of targeted environmental flows to facilitate migration and spawning by Australian grayling in the Bunyip–Tarago river system and other coastal systems in Victoria.

Journal

Environmental ManagementSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off