Predicting the Electric Field Effect on the Lateral Interactions Between Adsorbates: O/Fe(100) from First Principles

Predicting the Electric Field Effect on the Lateral Interactions Between Adsorbates: O/Fe(100)... A density functional theory parameterized lattice gas cluster expansion of oxygen on an Fe(100) surface is developed in the presence and absence of an applied positive and negative external electric field, characterizing the heterogeneity in oxygen’s surface distribution and the effect of an external electric field on the lateral interactions between the adsorbates. We show that the presence of a negative electric field tends to weaken both attractive and repulsive interactions while the positive electric field tends to strengthen these interactions, altering surface distributions and ground state configurations. Since lateral interactions have been shown to play a critical role in defining catalytic behavior, the application of an applied electric field has the potential to be a useful tool in adjusting critical chemical properties of Fe-based hydrodeoxygenation catalysts, by decreasing the repulsive interactions between the adspecies in the presence of a negative field and thereby mitigating the formation of an oxide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Topics in Catalysis Springer Journals

Predicting the Electric Field Effect on the Lateral Interactions Between Adsorbates: O/Fe(100) from First Principles

Loading next page...
 
/lp/springer_journal/predicting-the-electric-field-effect-on-the-lateral-interactions-KIkIIjg02E
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Chemistry; Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials
ISSN
1022-5528
eISSN
1572-9028
D.O.I.
10.1007/s11244-018-0944-z
Publisher site
See Article on Publisher Site

Abstract

A density functional theory parameterized lattice gas cluster expansion of oxygen on an Fe(100) surface is developed in the presence and absence of an applied positive and negative external electric field, characterizing the heterogeneity in oxygen’s surface distribution and the effect of an external electric field on the lateral interactions between the adsorbates. We show that the presence of a negative electric field tends to weaken both attractive and repulsive interactions while the positive electric field tends to strengthen these interactions, altering surface distributions and ground state configurations. Since lateral interactions have been shown to play a critical role in defining catalytic behavior, the application of an applied electric field has the potential to be a useful tool in adjusting critical chemical properties of Fe-based hydrodeoxygenation catalysts, by decreasing the repulsive interactions between the adspecies in the presence of a negative field and thereby mitigating the formation of an oxide.

Journal

Topics in CatalysisSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off