Predicting soil water content at − 33kPa by pedotransfer functions in stoniness 1 soils in northeast Venezuela

Predicting soil water content at − 33kPa by pedotransfer functions in stoniness 1 soils in... Soil water content is a key property in the study of water available for plants, infiltration, drainage, hydraulic conductivity, irrigation, plant water stress and solute movement. However, its measurement consumes time and, in the case of stony soils, the presence of stones difficult to determinate the water content. An alternative is the use of pedotransfer functions (PTFs), as models to predict these properties from readily available data. The present work shows a comparison of different widely used PTFs to estimate water content at-33 kPa (WR-33kPa) in high stoniness soils. The work was carried out in the Caramacate River, an area of high interest because the frequent landslides worsen the quality of drinking water. The performance of all evaluated PTFs was compared with a PTF generated for the study area. Results showed that the Urach’s PTF presented the best performance in relation to the others and could be used to estimate WR-33kPa in soils of Caramacate River basin. The calculated PTFs had a R 2 of 0.65. This was slightly higher than the R 2 of the Urach’s PTF. The inclusion of the rock fragment volume could have the better results. The weak performance of the other PTFs could be related to the fact that the mountain soils of the basin are rich in 2:1 clay and high stoniness, which were not used as independent variables for PTFs to estimate the WR-33kPa. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

Predicting soil water content at − 33kPa by pedotransfer functions in stoniness 1 soils in northeast Venezuela

Loading next page...
 
/lp/springer_journal/predicting-soil-water-content-at-33kpa-by-pedotransfer-functions-in-U7o7tm0cZO
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
D.O.I.
10.1007/s10661-018-6528-3
Publisher site
See Article on Publisher Site

Abstract

Soil water content is a key property in the study of water available for plants, infiltration, drainage, hydraulic conductivity, irrigation, plant water stress and solute movement. However, its measurement consumes time and, in the case of stony soils, the presence of stones difficult to determinate the water content. An alternative is the use of pedotransfer functions (PTFs), as models to predict these properties from readily available data. The present work shows a comparison of different widely used PTFs to estimate water content at-33 kPa (WR-33kPa) in high stoniness soils. The work was carried out in the Caramacate River, an area of high interest because the frequent landslides worsen the quality of drinking water. The performance of all evaluated PTFs was compared with a PTF generated for the study area. Results showed that the Urach’s PTF presented the best performance in relation to the others and could be used to estimate WR-33kPa in soils of Caramacate River basin. The calculated PTFs had a R 2 of 0.65. This was slightly higher than the R 2 of the Urach’s PTF. The inclusion of the rock fragment volume could have the better results. The weak performance of the other PTFs could be related to the fact that the mountain soils of the basin are rich in 2:1 clay and high stoniness, which were not used as independent variables for PTFs to estimate the WR-33kPa.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off