Predicting social response to infectious disease outbreaks from internet-based news streams

Predicting social response to infectious disease outbreaks from internet-based news streams Infectious disease outbreaks often have consequences beyond human health, including concern among the population, economic instability, and sometimes violence. A warning system capable of anticipating social disruptions resulting from disease outbreaks is urgently needed to help decision makers prepare appropriately. We designed a system that operates in near real-time to identify and predict social response. Over 150,000 Internet-based news articles related to outbreaks of 16 diseases in 72 countries and territories were provided by HealthMap. These articles were automatically tagged with indicators of the disease activity and population reaction. An anomaly detection algorithm was implemented on the population reaction indicators to identify periods of unusually severe social response. Then a model was developed to predict the probability of these periods of unusually severe social response occurring in the coming week, 2 and 3 weeks. This model exhibited remarkably strong performance for diseases with substantial media coverage. For country-disease pairs with a median of 20 or more articles per year, the onset of social response in the next week was correctly predicted over 60% of the time, and 87% of weeks were correctly predicted. Performance was weaker for diseases with little media coverage, and, for these diseases, the main utility of our system is in identifying social response when it occurs, rather than predicting when it will happen in the future. Overall, the developed near real-time prediction approach is a promising step toward developing predictive models to inform responders of the likely social consequences of disease spread. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Predicting social response to infectious disease outbreaks from internet-based news streams

Loading next page...
 
/lp/springer_journal/predicting-social-response-to-infectious-disease-outbreaks-from-0hTi87MNt9
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-017-2480-9
Publisher site
See Article on Publisher Site

Abstract

Infectious disease outbreaks often have consequences beyond human health, including concern among the population, economic instability, and sometimes violence. A warning system capable of anticipating social disruptions resulting from disease outbreaks is urgently needed to help decision makers prepare appropriately. We designed a system that operates in near real-time to identify and predict social response. Over 150,000 Internet-based news articles related to outbreaks of 16 diseases in 72 countries and territories were provided by HealthMap. These articles were automatically tagged with indicators of the disease activity and population reaction. An anomaly detection algorithm was implemented on the population reaction indicators to identify periods of unusually severe social response. Then a model was developed to predict the probability of these periods of unusually severe social response occurring in the coming week, 2 and 3 weeks. This model exhibited remarkably strong performance for diseases with substantial media coverage. For country-disease pairs with a median of 20 or more articles per year, the onset of social response in the next week was correctly predicted over 60% of the time, and 87% of weeks were correctly predicted. Performance was weaker for diseases with little media coverage, and, for these diseases, the main utility of our system is in identifying social response when it occurs, rather than predicting when it will happen in the future. Overall, the developed near real-time prediction approach is a promising step toward developing predictive models to inform responders of the likely social consequences of disease spread.

Journal

Annals of Operations ResearchSpringer Journals

Published: Mar 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off