Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network

Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and... No-shows are becoming a major problem in primary care facilities, creating additional costs for the facility while adversely affecting the quality of patient care. Accurately predicting no-shows plays an important role in the overbooking strategy. In this study, a hybrid probabilistic prediction framework based on the elastic net (EN) variable-selection methodology integrated with probabilistic Bayesian Belief Network (BBN) is proposed. The study predicts the “no-show probability of the patient(s)” using demographics, socioeconomic status, current appointment information, and appointment attendance history of the patient and the family. The proposed framework is validated using ten years of local pediatric clinic data. It is shown that this EN-based BBN framework is a comparable prediction methodology regarding the best approaches found in the literature. More importantly, this methodology provides novel information on the interrelations of predictors and the conditional probability of predicting “no-shows.” The output of the model can be applied to the appointment scheduling system for a robust overbooking strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network

Loading next page...
 
/lp/springer_journal/predicting-pediatric-clinic-no-shows-a-decision-analytic-framework-xoPn08nxyI
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-017-2489-0
Publisher site
See Article on Publisher Site

Abstract

No-shows are becoming a major problem in primary care facilities, creating additional costs for the facility while adversely affecting the quality of patient care. Accurately predicting no-shows plays an important role in the overbooking strategy. In this study, a hybrid probabilistic prediction framework based on the elastic net (EN) variable-selection methodology integrated with probabilistic Bayesian Belief Network (BBN) is proposed. The study predicts the “no-show probability of the patient(s)” using demographics, socioeconomic status, current appointment information, and appointment attendance history of the patient and the family. The proposed framework is validated using ten years of local pediatric clinic data. It is shown that this EN-based BBN framework is a comparable prediction methodology regarding the best approaches found in the literature. More importantly, this methodology provides novel information on the interrelations of predictors and the conditional probability of predicting “no-shows.” The output of the model can be applied to the appointment scheduling system for a robust overbooking strategy.

Journal

Annals of Operations ResearchSpringer Journals

Published: Apr 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial