Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network

Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and... No-shows are becoming a major problem in primary care facilities, creating additional costs for the facility while adversely affecting the quality of patient care. Accurately predicting no-shows plays an important role in the overbooking strategy. In this study, a hybrid probabilistic prediction framework based on the elastic net (EN) variable-selection methodology integrated with probabilistic Bayesian Belief Network (BBN) is proposed. The study predicts the “no-show probability of the patient(s)” using demographics, socioeconomic status, current appointment information, and appointment attendance history of the patient and the family. The proposed framework is validated using ten years of local pediatric clinic data. It is shown that this EN-based BBN framework is a comparable prediction methodology regarding the best approaches found in the literature. More importantly, this methodology provides novel information on the interrelations of predictors and the conditional probability of predicting “no-shows.” The output of the model can be applied to the appointment scheduling system for a robust overbooking strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network

Loading next page...
 
/lp/springer_journal/predicting-pediatric-clinic-no-shows-a-decision-analytic-framework-xoPn08nxyI
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-017-2489-0
Publisher site
See Article on Publisher Site

Abstract

No-shows are becoming a major problem in primary care facilities, creating additional costs for the facility while adversely affecting the quality of patient care. Accurately predicting no-shows plays an important role in the overbooking strategy. In this study, a hybrid probabilistic prediction framework based on the elastic net (EN) variable-selection methodology integrated with probabilistic Bayesian Belief Network (BBN) is proposed. The study predicts the “no-show probability of the patient(s)” using demographics, socioeconomic status, current appointment information, and appointment attendance history of the patient and the family. The proposed framework is validated using ten years of local pediatric clinic data. It is shown that this EN-based BBN framework is a comparable prediction methodology regarding the best approaches found in the literature. More importantly, this methodology provides novel information on the interrelations of predictors and the conditional probability of predicting “no-shows.” The output of the model can be applied to the appointment scheduling system for a robust overbooking strategy.

Journal

Annals of Operations ResearchSpringer Journals

Published: Apr 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off