Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking... Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different model sizes are used to predict the grid-size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson–Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus, a general framework is developed to quantify the grid-size-dependent fracture strains for multiphase materials. In addition to the grid-size dependency, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus model size relationship is demonstrated with large clearance trimming simulations with different element sizes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Fracture Springer Journals

Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

Loading next page...
 
/lp/springer_journal/predicting-grid-size-dependent-fracture-strains-of-dp980-with-a-x1tA7lcHVr
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Materials Science; Characterization and Evaluation of Materials; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0376-9429
eISSN
1573-2673
D.O.I.
10.1007/s10704-017-0229-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial