Predicting failures in agile software development through data analytics

Predicting failures in agile software development through data analytics Artificial intelligence-driven software development paradigms have been attracting much attention in academia, industry and the government. More specifically, within the last 5 years, a wave of data analytics is affecting businesses from all domains, influencing engineering management practices in many industries and making a difference in academic research. Several major software vendors have been adopting a form of “intelligent” development in one or more phases of their software development processes. Agile for example, is a well-known example of a lifecycle used to build intelligent and analytical systems. The agile process consists of multiple sprints; in each sprint a specific software feature is developed, tested, refined and documented. However, because agile development depends on the context of the project, testing is performed differently in every sprint. This paper introduces a method to predict software failures in the subsequent agile sprints. That is achieved by utilizing analytical and statistical methods (such as using Mean Time between Failures and modelling regression). The novel method is called: analytics-driven testing (ADT). ADT predicts errors and their locations (with a certain statistical confidence level). That is done by continuously measuring MTBF for software components, and using a forecasting regression model for estimating where and what types of software system failures are likely to occur. ADT is presented and evaluated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Software Quality Journal Springer Journals

Predicting failures in agile software development through data analytics

Loading next page...
 
/lp/springer_journal/predicting-failures-in-agile-software-development-through-data-paOHM8fgBz
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Software Engineering/Programming and Operating Systems; Programming Languages, Compilers, Interpreters; Data Structures, Cryptology and Information Theory; Operating Systems
ISSN
0963-9314
eISSN
1573-1367
D.O.I.
10.1007/s11219-015-9285-3
Publisher site
See Article on Publisher Site

Abstract

Artificial intelligence-driven software development paradigms have been attracting much attention in academia, industry and the government. More specifically, within the last 5 years, a wave of data analytics is affecting businesses from all domains, influencing engineering management practices in many industries and making a difference in academic research. Several major software vendors have been adopting a form of “intelligent” development in one or more phases of their software development processes. Agile for example, is a well-known example of a lifecycle used to build intelligent and analytical systems. The agile process consists of multiple sprints; in each sprint a specific software feature is developed, tested, refined and documented. However, because agile development depends on the context of the project, testing is performed differently in every sprint. This paper introduces a method to predict software failures in the subsequent agile sprints. That is achieved by utilizing analytical and statistical methods (such as using Mean Time between Failures and modelling regression). The novel method is called: analytics-driven testing (ADT). ADT predicts errors and their locations (with a certain statistical confidence level). That is done by continuously measuring MTBF for software components, and using a forecasting regression model for estimating where and what types of software system failures are likely to occur. ADT is presented and evaluated.

Journal

Software Quality JournalSpringer Journals

Published: Aug 9, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off