Predicting Cotton Lint Yield Maps from Aerial Photographs

Predicting Cotton Lint Yield Maps from Aerial Photographs It is generally accepted that aerial images of growing crops provide spatial and temporal information about crop growth conditions and may even be indicative of crop yield. The focus of this study was to develop a straightforward technique for creating predictive cotton yield maps from aerial images. A total of ten fields in southern Georgia, USA, were studied during three growing seasons. Conventional (true color) aerial photographs of the fields were acquired during the growing season in two to four week intervals. The aerial photos were then digitized and analyzed using an unsupervised classification function of image analysis software. During harvest, conventional yield maps were created for each of the fields using a cotton picker mounted yield monitor. Classified images and yield maps were compared quantitatively and qualitatively. A pixel by pixel comparison of the classified images and yield maps showed that spatial agreement between the two gradually increased in the weeks after planting, maintained spatial agreement of between 40% and 60% during weeks eight to fourteen, and then gradually declined again. The highest spatial agreement between a classified image and a yield map was 78%. The highest average agreement was 52% and occurred 9.9 weeks after planting. The visual similarity between the classified images and the yield maps were striking. In all cases, the dates with the best visual agreement occurred between eight and ten weeks after planting, and generally, during July for southern Georgia. This method offers great potential for offering cotton farmers early-season maps that predict the spatial distribution of yield. Although these maps can not provide magnitudes, they clearly show the resulting yield patterns. With inherent knowledge of past performance, farmers can use this information to allocate resources, address crop growth problems, and, perhaps, improve the profitability of their farm operation. These maps are well suited to be offered to farmers as a service by a crop consultant or a cooperative. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Predicting Cotton Lint Yield Maps from Aerial Photographs

Loading next page...
 
/lp/springer_journal/predicting-cotton-lint-yield-maps-from-aerial-photographs-GPtypqcs0e
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-004-6342-5
Publisher site
See Article on Publisher Site

Abstract

It is generally accepted that aerial images of growing crops provide spatial and temporal information about crop growth conditions and may even be indicative of crop yield. The focus of this study was to develop a straightforward technique for creating predictive cotton yield maps from aerial images. A total of ten fields in southern Georgia, USA, were studied during three growing seasons. Conventional (true color) aerial photographs of the fields were acquired during the growing season in two to four week intervals. The aerial photos were then digitized and analyzed using an unsupervised classification function of image analysis software. During harvest, conventional yield maps were created for each of the fields using a cotton picker mounted yield monitor. Classified images and yield maps were compared quantitatively and qualitatively. A pixel by pixel comparison of the classified images and yield maps showed that spatial agreement between the two gradually increased in the weeks after planting, maintained spatial agreement of between 40% and 60% during weeks eight to fourteen, and then gradually declined again. The highest spatial agreement between a classified image and a yield map was 78%. The highest average agreement was 52% and occurred 9.9 weeks after planting. The visual similarity between the classified images and the yield maps were striking. In all cases, the dates with the best visual agreement occurred between eight and ten weeks after planting, and generally, during July for southern Georgia. This method offers great potential for offering cotton farmers early-season maps that predict the spatial distribution of yield. Although these maps can not provide magnitudes, they clearly show the resulting yield patterns. With inherent knowledge of past performance, farmers can use this information to allocate resources, address crop growth problems, and, perhaps, improve the profitability of their farm operation. These maps are well suited to be offered to farmers as a service by a crop consultant or a cooperative.

Journal

Precision AgricultureSpringer Journals

Published: Jun 16, 2004

References

  • Identifying potential within-field management zones from cotton-yield estimates
    Boydell, B.; McBratney, A. B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off