Predicted risks of groundwater decline in seasonal wetland plant communities depend on basin morphology

Predicted risks of groundwater decline in seasonal wetland plant communities depend on basin... In regions of the world where the climate is expected to become drier, meeting environmental water needs for wetlands and other dependent ecosystems will become increasingly challenging. Ecological models can play an important role, by quantifying system responses to reduced water availability and predicting likely ecological impacts. Anticipating these changes can inform both conservation and monitoring effort. We used water-plant functional group models to predict the effects of a declining water table for two wetland types reliant on the surface expression of groundwater but of contrasting basin morphology. Our interest was in quantifying the relative sensitivity of these wetland types to different amounts of groundwater decline. For the shallower, grass-sedge wetland, terrestrial plant probabilities increased markedly for declines between 0.25 and 0.5 m, but amphibious and submerged functional groups changed predictably, or not at all. However, mean inundated area reduced by over 70% for a 0.5 m groundwater decline, suggesting loss of area posed the greatest risk in this wetland type. In the deeper, steep-sided interdunal wetland, inundated area changed little, but models suggest clear transitions in plant functional group composition. Sedge-group probabilities increased sharply for declines between 0.25 and 0.5 m, while declines between 0.5 and 1.0 m predicted the loss of submerged species. As might be anticipated, the risks associated with groundwater level decline depend on basin morphology. However, by quantifying probable ways in which this will manifest in different wetland types, model predictions improve our ability to recognise and manage change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wetlands Ecology and Management Springer Journals

Predicted risks of groundwater decline in seasonal wetland plant communities depend on basin morphology

Loading next page...
 
/lp/springer_journal/predicted-risks-of-groundwater-decline-in-seasonal-wetland-plant-4rtLOjpmtN
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Conservation Biology/Ecology; Environmental Law/Policy/Ecojustice; Marine & Freshwater Sciences; Hydrology/Water Resources; Water Quality/Water Pollution
ISSN
0923-4861
eISSN
1572-9834
D.O.I.
10.1007/s11273-017-9578-3
Publisher site
See Article on Publisher Site

Abstract

In regions of the world where the climate is expected to become drier, meeting environmental water needs for wetlands and other dependent ecosystems will become increasingly challenging. Ecological models can play an important role, by quantifying system responses to reduced water availability and predicting likely ecological impacts. Anticipating these changes can inform both conservation and monitoring effort. We used water-plant functional group models to predict the effects of a declining water table for two wetland types reliant on the surface expression of groundwater but of contrasting basin morphology. Our interest was in quantifying the relative sensitivity of these wetland types to different amounts of groundwater decline. For the shallower, grass-sedge wetland, terrestrial plant probabilities increased markedly for declines between 0.25 and 0.5 m, but amphibious and submerged functional groups changed predictably, or not at all. However, mean inundated area reduced by over 70% for a 0.5 m groundwater decline, suggesting loss of area posed the greatest risk in this wetland type. In the deeper, steep-sided interdunal wetland, inundated area changed little, but models suggest clear transitions in plant functional group composition. Sedge-group probabilities increased sharply for declines between 0.25 and 0.5 m, while declines between 0.5 and 1.0 m predicted the loss of submerged species. As might be anticipated, the risks associated with groundwater level decline depend on basin morphology. However, by quantifying probable ways in which this will manifest in different wetland types, model predictions improve our ability to recognise and manage change.

Journal

Wetlands Ecology and ManagementSpringer Journals

Published: Sep 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off