Predictable performance and high query concurrency for data analytics

Predictable performance and high query concurrency for data analytics Conventional data warehouses employ the query-at-a-time model, which maps each query to a distinct physical plan. When several queries execute concurrently, this model introduces contention and thrashing, because the physical plans—unaware of each other—compete for access to the underlying I/O and computation resources. As a result, while modern systems can efficiently optimize and evaluate a single complex data analysis query, their performance suffers significantly and can be highly erratic when multiple complex queries run at the same time. We present in this paper C join , a new design that substantially improves throughput in large-scale data analytics systems processing many concurrent join queries. In contrast to the conventional query-at-a-time model our approach employs a single physical plan that shares I/O, computation, and tuple storage across all in-flight join queries. We use an “always on” pipeline of non-blocking operators, managed by a controller that continuously examines the current query mix and optimizes the pipeline on the fly. Our design enables data analytics engines to scale gracefully to large data sets, provide predictable execution times, and reduce contention. We implemented C join as an extension to the PostgreSQL DBMS. This prototype outperforms conventional commercial systems by an order of magnitude for tens to hundreds of concurrent queries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Predictable performance and high query concurrency for data analytics

Loading next page...
 
/lp/springer_journal/predictable-performance-and-high-query-concurrency-for-data-analytics-Ucn5HgGnrU
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0221-2
Publisher site
See Article on Publisher Site

Abstract

Conventional data warehouses employ the query-at-a-time model, which maps each query to a distinct physical plan. When several queries execute concurrently, this model introduces contention and thrashing, because the physical plans—unaware of each other—compete for access to the underlying I/O and computation resources. As a result, while modern systems can efficiently optimize and evaluate a single complex data analysis query, their performance suffers significantly and can be highly erratic when multiple complex queries run at the same time. We present in this paper C join , a new design that substantially improves throughput in large-scale data analytics systems processing many concurrent join queries. In contrast to the conventional query-at-a-time model our approach employs a single physical plan that shares I/O, computation, and tuple storage across all in-flight join queries. We use an “always on” pipeline of non-blocking operators, managed by a controller that continuously examines the current query mix and optimizes the pipeline on the fly. Our design enables data analytics engines to scale gracefully to large data sets, provide predictable execution times, and reduce contention. We implemented C join as an extension to the PostgreSQL DBMS. This prototype outperforms conventional commercial systems by an order of magnitude for tens to hundreds of concurrent queries.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off