Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core–shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection

Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core–shell... To obtain dual active near-infrared (NIR) nanomaterial with strong absorption and emission properties, we report herein a novel precursor reactivity differentiation strategy, i.e., utilizing 1-octadecene (ODE)–Se having the ability to react with Ag salts much stronger and faster than ODE–thiourea, for single-step preparation of Ag2Se@Ag2S nanocrystals (NCs). With this strategy, we were able to synthesize high-quality Ag2Se@Ag2S NCs with both excellent NIR absorption and emission properties. Particularly, these nanocrystals possess a rather strong and sharp excitonic absorption peak with a full width at half maximum less than 70 nm and a maximum fluorescence quantum yield as high as 24.3%. Their appealing optical properties and structural features were founded to be highly dependent on the Se to S precursor ratio in the reaction solutions, owing to such a ratio exerting a direct influence on the core sizes and shell thicknesses of the as-formed NCs. Taking advantage of their remarkable NIR absorption properties, self-powered photoelectrochemical-type photodetectors based on the as-prepared Ag2Se@Ag2S NCs were successfully fabricated, which demonstrate a much better response performance and photostability in comparison with those based on Ag2Se NCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core–shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection

Loading next page...
 
/lp/springer_journal/precursor-reactivity-differentiation-for-single-step-preparation-of-jRbkTGQZqa
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-018-2465-3
Publisher site
See Article on Publisher Site

Abstract

To obtain dual active near-infrared (NIR) nanomaterial with strong absorption and emission properties, we report herein a novel precursor reactivity differentiation strategy, i.e., utilizing 1-octadecene (ODE)–Se having the ability to react with Ag salts much stronger and faster than ODE–thiourea, for single-step preparation of Ag2Se@Ag2S nanocrystals (NCs). With this strategy, we were able to synthesize high-quality Ag2Se@Ag2S NCs with both excellent NIR absorption and emission properties. Particularly, these nanocrystals possess a rather strong and sharp excitonic absorption peak with a full width at half maximum less than 70 nm and a maximum fluorescence quantum yield as high as 24.3%. Their appealing optical properties and structural features were founded to be highly dependent on the Se to S precursor ratio in the reaction solutions, owing to such a ratio exerting a direct influence on the core sizes and shell thicknesses of the as-formed NCs. Taking advantage of their remarkable NIR absorption properties, self-powered photoelectrochemical-type photodetectors based on the as-prepared Ag2Se@Ag2S NCs were successfully fabricated, which demonstrate a much better response performance and photostability in comparison with those based on Ag2Se NCs.

Journal

Journal of Materials ScienceSpringer Journals

Published: May 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off