Pre-planned optical burst switched routing strategies considering the streamline effect

Pre-planned optical burst switched routing strategies considering the streamline effect Optical burst switching is a promising paradigm for the next IP over optical network backbones. However, due to its bufferless nature, it can be highly affected by burst contention. Several methods have been proposed to address this problem, most of them without considering a phenomenon unique to optical burst switched networks called streamline effect. Most of the reported studies also assume the existence of total wavelength conversion capacity on all nodes, presently a very expensive and somewhat unrealistic configuration, and additionally, the contention resolution schemes adopted increase in the complexity of the core nodes, hampering scalability. In this study, we present a traffic engineering approach for path selection with the objective of minimizing the contention considering the streamline effect and using only topological information. The main idea is to balance the traffic across the network in order to prevent congestion while keeping simple the architecture of the core nodes and without incurring into link state dissemination penalties. We propose and evaluate the path selection strategies in both networks with full wavelength conversion capability and networks with imposed wavelength continuity constraint. Results show that our strategies can outperform the traditionally used shortest path routing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Pre-planned optical burst switched routing strategies considering the streamline effect

Loading next page...
 
/lp/springer_journal/pre-planned-optical-burst-switched-routing-strategies-considering-the-OfoiE13Bwx
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0221-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial