Powering prolonged hydrothermal activity inside Enceladus

Powering prolonged hydrothermal activity inside Enceladus Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus 1 , only a few kilometres below the surface in the South Polar Terrain 2–4 . Chemical analyses indicate that the ocean is salty 5 and is fed by ongoing hydrothermal activity 6–8 . In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole 9,10 . Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1–5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Astronomy Springer Journals
Loading next page...
 
/lp/springer_journal/powering-prolonged-hydrothermal-activity-inside-enceladus-AJMhZZrC9t
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Physics, general; Astronomy, Astrophysics and Cosmology
eISSN
2397-3366
D.O.I.
10.1038/s41550-017-0289-8
Publisher site
See Article on Publisher Site

Abstract

Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus 1 , only a few kilometres below the surface in the South Polar Terrain 2–4 . Chemical analyses indicate that the ocean is salty 5 and is fed by ongoing hydrothermal activity 6–8 . In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole 9,10 . Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1–5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years.

Journal

Nature AstronomySpringer Journals

Published: Nov 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off