Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: Diodon holocanthus)

Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers... Balances of multiple varying forces must be the basis for the unusually great dynamic stability of swimming pufferfishes. We used high-speed digital video recordings to study biomechanics and kinematics of rectilinear swimming at different speeds of five porcupine puffers in a water tunnel. We measured critical swimming speeds (U crit); fin biomechanics, kinematics, and coordination; recoil movements; and gait changes. Major propulsors were pectoral fins at lower speeds; dorsal, anal, and caudal fins at higher speeds. Precise coordination of fin movements produced small recoil movements at speeds below U crit. The unusual body shape probably contributes to unconscious stability control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: Diodon holocanthus)

Loading next page...
 
/lp/springer_journal/powered-control-mechanisms-contributing-to-dynamically-stable-swimming-HtqsRZow8S
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0354-7
Publisher site
See Article on Publisher Site

Abstract

Balances of multiple varying forces must be the basis for the unusually great dynamic stability of swimming pufferfishes. We used high-speed digital video recordings to study biomechanics and kinematics of rectilinear swimming at different speeds of five porcupine puffers in a water tunnel. We measured critical swimming speeds (U crit); fin biomechanics, kinematics, and coordination; recoil movements; and gait changes. Major propulsors were pectoral fins at lower speeds; dorsal, anal, and caudal fins at higher speeds. Precise coordination of fin movements produced small recoil movements at speeds below U crit. The unusual body shape probably contributes to unconscious stability control.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 21, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off