Power-aware virtual optical network provisioning in flexible bandwidth optical networks [Invited]

Power-aware virtual optical network provisioning in flexible bandwidth optical networks [Invited] Considering the virtual network infrastructure as a service, optical network virtualization can facilitate the physical infrastructure sharing among different clients and applications that require optical network resources. Obviously, mapping multiple virtual network infrastructures onto the same physical network infrastructure is one of the greatest challenges related to optical network virtualization in flexible bandwidth optical networks. In order to efficiently address the virtual optical network (VON) provisioning problem, we can first obtain the virtual links’ order and the virtual nodes’ order based on their characteristics, such as the bandwidth requirement on virtual links and computing resources on virtual nodes. We then preconfigure the primary and backup paths for all node-pairs in the physical optical network, and the auxiliary graph is constructed by preconfiguring primary and backup paths. Two VON mapping approaches that include the power-aware virtual-links mapping (PVLM) approach and the power-aware virtual-nodes mapping (PVNM) approach are developed to reduce power consumption for a given set of VONs in flexible bandwidth optical networks with the distributed data centers. Simulation results show that our proposed PVLM approach can greatly reduce power consumption and save spectrum resources compared to the PVNM approach for the single-line rate and the mixed-line rate in flexible bandwidth optical networks with the distributed data centers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Power-aware virtual optical network provisioning in flexible bandwidth optical networks [Invited]

Loading next page...
 
/lp/springer_journal/power-aware-virtual-optical-network-provisioning-in-flexible-bandwidth-SKn8A5hmOB
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0609-4
Publisher site
See Article on Publisher Site

Abstract

Considering the virtual network infrastructure as a service, optical network virtualization can facilitate the physical infrastructure sharing among different clients and applications that require optical network resources. Obviously, mapping multiple virtual network infrastructures onto the same physical network infrastructure is one of the greatest challenges related to optical network virtualization in flexible bandwidth optical networks. In order to efficiently address the virtual optical network (VON) provisioning problem, we can first obtain the virtual links’ order and the virtual nodes’ order based on their characteristics, such as the bandwidth requirement on virtual links and computing resources on virtual nodes. We then preconfigure the primary and backup paths for all node-pairs in the physical optical network, and the auxiliary graph is constructed by preconfiguring primary and backup paths. Two VON mapping approaches that include the power-aware virtual-links mapping (PVLM) approach and the power-aware virtual-nodes mapping (PVNM) approach are developed to reduce power consumption for a given set of VONs in flexible bandwidth optical networks with the distributed data centers. Simulation results show that our proposed PVLM approach can greatly reduce power consumption and save spectrum resources compared to the PVNM approach for the single-line rate and the mixed-line rate in flexible bandwidth optical networks with the distributed data centers.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off