Access the full text.
Sign up today, get DeepDyve free for 14 days.
De Beers kimberlite mine operations in South Africa (Venetia and Voorspoed) and Canada (Gahcho Kué, Victor, and Snap Lake) have the potential to sequester carbon dioxide (CO2) through weathering of kimberlite mine tailings, which can store carbon in secondary carbonate minerals (mineral carbonation). Carbonation of ca. 4.7 to 24.0 wt% (average = 13.8 wt%) of annual processed kimberlite production could offset 100% of each mine site’s carbon dioxide equivalent (CO2e) emissions. Minerals of particular interest for reactivity with atmospheric or waste CO2 from energy production include serpentine minerals, olivine (forsterite), brucite, and smectite. The most abundant minerals, such as serpentine polymorphs, provide the bulk of the carbonation potential. However, the detection of minor amounts of highly reactive brucite in tailings from Victor, as well as the likely presence of brucite at Venetia, Gahcho Kué, and Snap Lake, is also important for the mineral carbonation potential of the mine sites.
Mineralogy and Petrology – Springer Journals
Published: Dec 1, 2018
Keywords: Mineral carbonation; Carbon mineralization; Carbon sequestration; Carbonate; Kimberlite; Diamond mining
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.