Potential effects of dam cascade on fish: lessons from the Yangtze River

Potential effects of dam cascade on fish: lessons from the Yangtze River Construction of hydroelectric dams affect river ecosystems, fish diversity, and fisheries yields. However, there are no studies assessing the combined effects on fish caused by several adjacent dams and their reservoirs, as in a ‘dam cascade’. This study predicts the potential effects that a cascade of ten dams currently under construction in the upper Yangtze River in China will have on local fishes, and uses such predictions to assess the effectiveness of possible fish conservation measures. We found that the dam cascade will have serious combined effects on fishes mainly due to impoundment, habitat fragmentation and blocking, flow regime modification, and hypolimnetic discharges. The impoundments will cause loss of critical habitats for 46 endemic species. The dams will fragment the populations of 134 species and will block migration routes for 35 potamodromous fishes. Corieus guichenoti will have a high risk of extinction due to the combined effects of impoundment and blocking. Modification of the flow regime will adversely affect the recruitment of 26 species that produce drifting eggs. The start of annual spawning for 13 fishes will be postponed by more than 1 month, and fish spawning and growth opportunities will be reduced due to low water temperatures associated with hypolimnetic discharges. Combined dam effects will further reduce the likelihood of successful recruitment of some endangered species, such as Acipenser dabryanus and Psephurus gladius. Three countermeasures hold promise to mitigate the near-term effects of the dam cascade, including preservation and rehabilitation of critical habitat, restoration of a semi-natural flow regime, and stock enhancement that respects genetic integrity. These conclusions can guide the development of protection plans for fishes in the upper Yangtze River. The approach undertaken in this study—by which the known and likely effects of present and future dams were simultaneously considered in light of the biology of the species—highlights the usefulness of ichthyology for fish conservation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Potential effects of dam cascade on fish: lessons from the Yangtze River

Loading next page...
Springer International Publishing
Copyright © 2015 by Springer International Publishing Switzerland
Life Sciences; Freshwater & Marine Ecology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial