Postnatal lethality and cardiac anomalies in the Ts65Dn Down Syndrome mouse model

Postnatal lethality and cardiac anomalies in the Ts65Dn Down Syndrome mouse model The Ts65Dn mouse is a well-studied model for Down syndrome (DS). The presence of the translocation chromosome T1716 (referred to as T65Dn) produces a trisomic dosage imbalance for over 100 genes on the distal region of mouse Chromosome 16. This dosage imbalance, with more than half of the orthologs of human Chromosome 21 (Hsa21), causes several phenotypes in the trisomic mice that are reminiscent of DS. Careful examination of neonates in a newly established Ts65Dn colony indicated high rates of postnatal lethality. Although the transmission rate for the T65Dn chromosome has been previously reported as 20%–40%, genotyping of all progeny indicates transmission at birth is near the 50% expected with Mendelian transmission and survival. Remarkably, in litters with maternal care that allowed survival of some pups, postnatal lethality occurred primarily in pups that inherited the T65Dn marker chromosome. This selective loss within 48 h of birth reduced the transmission of the marker chromosome from 49% at birth to 34% at weaning. Gross morphologic examination revealed cardiovascular anomalies, i.e., right aortic arch accompanied by septal defects, in 8.3% of the trisomic newborn cadavers examined. This is an intriguing finding because the orthologs of the DiGeorge region of HSA22, which are posited to contribute to the aortic arch abnormalities seen in trisomy 16 mice, are not triplicated in Ts65Dn mice. These new observations suggest that the Ts65Dn mouse models DS not only in its previously described phenotypes but also with elevated postnatal lethality and congenital heart malformations that may contribute to mortality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Postnatal lethality and cardiac anomalies in the Ts65Dn Down Syndrome mouse model

Loading next page...
 
/lp/springer_journal/postnatal-lethality-and-cardiac-anomalies-in-the-ts65dn-down-syndrome-yQatR7XxKp
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-006-0032-8
Publisher site
See Article on Publisher Site

Abstract

The Ts65Dn mouse is a well-studied model for Down syndrome (DS). The presence of the translocation chromosome T1716 (referred to as T65Dn) produces a trisomic dosage imbalance for over 100 genes on the distal region of mouse Chromosome 16. This dosage imbalance, with more than half of the orthologs of human Chromosome 21 (Hsa21), causes several phenotypes in the trisomic mice that are reminiscent of DS. Careful examination of neonates in a newly established Ts65Dn colony indicated high rates of postnatal lethality. Although the transmission rate for the T65Dn chromosome has been previously reported as 20%–40%, genotyping of all progeny indicates transmission at birth is near the 50% expected with Mendelian transmission and survival. Remarkably, in litters with maternal care that allowed survival of some pups, postnatal lethality occurred primarily in pups that inherited the T65Dn marker chromosome. This selective loss within 48 h of birth reduced the transmission of the marker chromosome from 49% at birth to 34% at weaning. Gross morphologic examination revealed cardiovascular anomalies, i.e., right aortic arch accompanied by septal defects, in 8.3% of the trisomic newborn cadavers examined. This is an intriguing finding because the orthologs of the DiGeorge region of HSA22, which are posited to contribute to the aortic arch abnormalities seen in trisomy 16 mice, are not triplicated in Ts65Dn mice. These new observations suggest that the Ts65Dn mouse models DS not only in its previously described phenotypes but also with elevated postnatal lethality and congenital heart malformations that may contribute to mortality.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 3, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off