Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L.

Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L. The glutathione S- transferase encoded by Bronze2 performs the last genetically defined step in maize anthocyanin biosynthesis, being required for pigment sequestration into vacuoles. The Bz2 primary transcript contains a single intron; in maize leaves both spliced and unspliced Bz2 transcripts are usually present and are predicted to encode 26 and 14 kDa proteins, respectively. To increase understanding of the role and regulation of Bz2 transcript splicing, we examined Bz2 expression during development in transgenic maize plants expressing a 35S:Bz2 (35S:mycBz2i) gene and, by transient expression analysis, in Black Mexican Sweet maize protoplasts. We show here that the gene is expressed in diverse tissues that lack functional copies of one or both transcription factors regulating anthocyanin synthesis, that transcript levels are much higher when the R/B plus C1/Pl transcription factors are present, and that the splicing decision depends on local sequence context. The predicted 14 kDa protein was never detected indicating that unspliced transcripts are likely to be non-coding. The native 26 kDa BZ2 protein is loosely membrane-bound, but it was detectable only in tissues accumulating anthocyanin. Consequently, BZ2 accumulation appears to be limited by stringent post-transcriptional regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L.

Loading next page...
 
/lp/springer_journal/post-transcriptional-regulation-of-expression-of-the-bronze2-gene-of-WTbMLW9Y0W
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000009267.76482.ce
Publisher site
See Article on Publisher Site

Abstract

The glutathione S- transferase encoded by Bronze2 performs the last genetically defined step in maize anthocyanin biosynthesis, being required for pigment sequestration into vacuoles. The Bz2 primary transcript contains a single intron; in maize leaves both spliced and unspliced Bz2 transcripts are usually present and are predicted to encode 26 and 14 kDa proteins, respectively. To increase understanding of the role and regulation of Bz2 transcript splicing, we examined Bz2 expression during development in transgenic maize plants expressing a 35S:Bz2 (35S:mycBz2i) gene and, by transient expression analysis, in Black Mexican Sweet maize protoplasts. We show here that the gene is expressed in diverse tissues that lack functional copies of one or both transcription factors regulating anthocyanin synthesis, that transcript levels are much higher when the R/B plus C1/Pl transcription factors are present, and that the splicing decision depends on local sequence context. The predicted 14 kDa protein was never detected indicating that unspliced transcripts are likely to be non-coding. The native 26 kDa BZ2 protein is loosely membrane-bound, but it was detectable only in tissues accumulating anthocyanin. Consequently, BZ2 accumulation appears to be limited by stringent post-transcriptional regulation.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off